分析 (1)把参数方程、极坐标方程化为直角坐标方程,证明$\overrightarrow{OA}$•$\overrightarrow{OB}$=x1x2+y1y2=-1;
(2)直线l的参数方程为$\left\{\begin{array}{l}{x=1+tcosα}\\{y=tsinα}\end{array}\right.$,代入y2=2x,可得t2sin2α-2tcosα-2=0,利用参数的几何意义,即可求解.
解答 (1)证明:直线l的参数方程为$\left\{\begin{array}{l}{x=1+tcosα}\\{y=tsinα}\end{array}\right.$ (t为参数,0<α<$\frac{π}{2}$),普通方程为y=tanα(x-1),
曲线C的极坐标方程为ρcos2θ+2cosθ=ρ的直角坐标方程为y2=2x,
联立可得tan2αx-(2tan2α+2)x+tan2α=0,
设A(x1,y1),B(x2,y2),∴x1+x2=2+$\frac{2}{ta{n}^{2}α}$,x1x2=1,
∴y1y2=-2,
∴$\overrightarrow{OA}$•$\overrightarrow{OB}$=x1x2+y1y2=-1定值;
(2)解:直线l的参数方程为$\left\{\begin{array}{l}{x=1+tcosα}\\{y=tsinα}\end{array}\right.$,代入y2=2x,可得t2sin2α-2tcosα-2=0,
设A,B对应的参数分别为t1,t2,则t1=-2t2,t1+t2=$\frac{2cosα}{si{n}^{2}α}$,t1t2=-$\frac{2}{si{n}^{2}α}$,
化简可得cosα=$±\frac{1}{2}$,∴tanα=±$\sqrt{3}$,
∴直线1的普通方程为y=$±\sqrt{3}$(x-1).
点评 本题主要考查把参数方程、极坐标方程化为直角坐标方程的方法,直线与抛物线的位置关系,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | (-4,0) | B. | (-4,-2] | C. | (-4,4) | D. | (-4,-2) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 8 | C. | 5 | D. | 7 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $(\frac{1}{2},+∞)$ | B. | $(-∞,\frac{1}{2})$ | C. | $({\frac{1}{2},2}]$ | D. | $[{-2,\frac{1}{2}})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -2 | B. | -1 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,1) | B. | (-2,0) | C. | (-2,0] | D. | (-2,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com