精英家教网 > 高中数学 > 题目详情
双曲线E的渐近线方程为y=±
4
3
x
,且经过点(2
3
4
3
3
)

(1)求双曲线E的方程;
(2)F1,F2为双曲线E的两个焦点,P为双曲线上一点,若|PF1|•|PF2|=32,求∠F1PF2的大小.
分析:(1)设双曲线方程为
x2
9
-
y2
16
(λ≠0),代入点(2
3
4
3
3
)
,可得λ的值,从而可求双曲线E的方程;
(2)利用双曲线的定义,结合余弦定理,即可求∠F1PF2的大小.
解答:解:(1)设双曲线方程为
x2
9
-
y2
16
(λ≠0),
代入点(2
3
4
3
3
)
,可得
12
9
-
3
9

∴λ=1,
∴双曲线E的方程为
x2
9
-
y2
16
=1

(2)由
x2
9
-
y2
16
=1
得c2=25,
∴4c2=100
设|PF1|=d1,|PF2|=d2,则|d1-d2|=6…①
由已知条件:d1•d2=32…②
由①、②得,d12+d22=100
在△F1PF2中,由余弦定理得,cos∠F1PF2=
d12+d22-4c2
2d1d2
=0
∴∠F1PF2=90°
点评:解决焦点三角形问题一般要用到两种知识,一是曲线定义,本题中由双曲线定义可得焦半径之差,已知有焦半径之积,故可求出焦半径或其关系;二是余弦定理,利用解三角形知识求角或面积.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线C:
x2
2
-y2=1

(1)求双曲线C的渐近线方程;
(2)已知点M的坐标为(0,1).设P是双曲线C上的点,Q是点P关于原点的对称点.记λ=
MP
MQ
.求λ的取值范围;
(3)已知点D,E,M的坐标分别为(-2,-1),(2,-1),(0,1),P为双曲线C上在第一象限内的点.记l为经过原点与点P的直线,s为△DEM截直线l所得线段的长.试将s表示为直线l的斜率k的函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,直角坐标系xoy中,有Rt△ABC,∠C=90°,D在边BC上,BD=3DC,双曲线E以B、C为焦点,且经过A、D两点.
(1)求双曲线E的渐近线方程;
(2)若△ABC的周长为12,求双曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知中心在坐标原点,对称轴为坐标轴的双曲线C的离心率e=
3
2
,一条准线方程为x=
4
3
,则双曲线C的渐近线方程为(  )

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江西省南昌二中高二(上)第二次月考数学试卷(文科)(解析版) 题型:解答题

如图,直角坐标系xoy中,有Rt△ABC,∠C=90°,D在边BC上,BD=3DC,双曲线E以B、C为焦点,且经过A、D两点.
(1)求双曲线E的渐近线方程;
(2)若△ABC的周长为12,求双曲线的方程.

查看答案和解析>>

同步练习册答案