精英家教网 > 高中数学 > 题目详情
设函数f(x)=(
12
|x-4|-|x+1|-8,求使f(x)≥0的x的取值范围.
分析:由f(x)=2|x+1|-|x-4|-8≥0,可得2|x+1|-|x-4|≥23,故有|x+1|-|x-4|≥3.分x≤-1、-1<x≤4、x>4三种情况,分别求得x的范围,再取并集,即得所求.
解答:解:∵f(x)=2|x+1|-|x-4|-8≥0,∴2|x+1|-|x-4|≥23,∴|x+1|-|x-4|≥3.…(2分)
(1)当 x≤-1时,由 
x≤-1
-x-1+x-4≥3
 求得 x∈∅.…(5分)
(2)当-1<x≤4 时,由 
-1<x≤4
x+1+x-4≥3
,求得3≤x≤4.…(8分)
(3)当 x>4时,由  
x>4
x+1-x+4≥3
,可得x>4.…(11分)
综上:x的取值范围是[3,+∞).…(12分)
点评:本题主要考查指数不等式、绝对值不等式的解法,关键是去掉绝对值,化为与之等价的不等式组来解,体现了分类讨论的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=ax3-3x+1(x∈R),若对于任意的x∈[-1,1]都有f(x)≥0成立,则实数a的值为
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•安徽)设函数f(x)=ax-(1+a2)x2,其中a>0,区间I={x|f(x)>0}
(Ⅰ)求I的长度(注:区间(a,β)的长度定义为β-α);
(Ⅱ)给定常数k∈(0,1),当1-k≤a≤1+k时,求I长度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•浦东新区二模)记函数f(x)=f1(x),f(f(x))=f2(x),它们定义域的交集为D,若对任意的x∈D,f2(x)=x,则称f(x)是集合M的元素.
(1)判断函数f(x)=-x+1,g(x)=2x-1是否是M的元素;
(2)设函数f(x)=log2(1-2x),求f(x)的反函数f-1(x),并判断f(x)是否是M的元素;
(3)f(x)=
axx+b
∈M(a<0),求使f(x)<1成立的x的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

记函数f(x)=f1(x),f(f(x))=f2(x),它们定义域的交集为D,若对任意的x∈D,f2(x)=x,则称f(x)是集合M的元素,
例如f(x)=-x+1,对任意x∈R,f2(x)=f(f(x))=-(-x+1)+1=x,故f(x)=-x+1∈M.
(1)设函数f(x)=log2(1-2x),判断f(x)是否是M的元素,并求f(x)的反函数f-1(x);
(2)f(x)=
axx+b
∈M
(a<0),求使f(x)<1成立的x的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)设函数f(x)=xlog2x+(1-x)log2(1-x)(0<x<1),求f(x)的最小值.
(2)设正数P1,P2,P3,…P2n满足P1+P2+…P2n=1,求证:P1log2P1+P2log2P2+P3log2P3+…+P2nlog2P2n≥-n.

查看答案和解析>>

同步练习册答案