精英家教网 > 高中数学 > 题目详情
如果x2=a,则x称为a的
 
;如果x3=a,则x称为a的
 
分析:利用平方根和立方根的定义即可得出.
解答:解:∵x2=a,由平方根的定义可得:x称为a的平方根;
∵x3=a,由立方根的定义可知:x称为a的立方根.
故答案分别为:平方根,立方根.
点评:本题考查了平方根和立方根的定义,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义:如果函数y=f(x)在定义域内给定区间[a,b]上存在x0(a<x0<b),满足f(x0)=
f(b)-f(a)b-a
,则称函数y=f(x)是[a,b]上的“平均值函数”,x0是它的一个均值点.如y=x4是[-1,1]上的平均值函数,0就是它的均值点.现有函数f(x)=-x2+mx+1是区间[-1,1]上的平均值函数,则实数m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在[a,b]上的函数,用分点T:a=x0<x1<…<xi-1<xi<…xn=b将区间[a,b]任意划分成n个小区间,如果存在一个常数M>0,使得和
ni=1
|f(xi)-f(xi-1)|
≤M(i=1,2,…,n)恒成立,则称f(x)为[a,b]上的有界变差函数.
(1)函数f(x)=x2在[0,1]上是否为有界变差函数?请说明理由;
(2)设函数f(x)是[a,b]上的单调递减函数,证明:f(x)为[a,b]上的有界变差函数;
(3)若定义在[a,b]上的函数f(x)满足:存在常数k,使得对于任意的x1、x2∈[a,b]时,|f(x1)-f(x2)|≤k•|x1-x2|.证明:f(x)为[a,b]上的有界变差函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•杭州一模)对于函数 f(x)与 g(x)和区间E,如果存在x0∈E,使|f(x0)-g(x0)|<1,则我们称函数 f(x)与 g(x)在区间E上“互相接近”.那么下列所给的两个函数在区间(0,+∞)上“互相接近”的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,如果存在正整数T,使得an+T=an对于任意正整数n均成立,那么就称数列{an}为周期数列,其中T叫做数列{an}的周期.已知数列{xn}满足xn+2=|xn+1-xn|(x∈N*),若x1=1,x2=a(a≤1,a≠0),当数列{xn}的周期为3时,则数列{xn}的前2014项的和S2014为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x)与g(x)和区间D,如果存在x0∈D,使|f(x0)-g(x0)|≤1,则称x0是函数f(x)与g(x)在区间D上的“友好点”.现给出两个函数:
①f(x)=x2,g(x)=2x-2;
②f(x)=
x
,g(x)=x+2;
③f(x)=e-x,g(x)=-
1
x

④f(x)=lnx,g(x)=x,
则在区间(0,+∞)上的存在唯一“友好点”的是(  )
A、①②B、③④C、②③D、①④

查看答案和解析>>

同步练习册答案