精英家教网 > 高中数学 > 题目详情
证明:不等式ln(1+x)>xx2x>0).

证明:令fx)=ln(1+x)-x+x2,则f′(x)=.

x>0时,f′(x)>0,

因此fx)在(0,+∞)内为增函数.

又因为f(0)=0,

于是当x>0时,fx)>0.

∴当x>0时,ln(1+x)>xx2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=x2+bln(x+1),其中b≠0.
(Ⅰ)当b>
1
2
时,判断函数f(x)在定义域上的单调性;
(Ⅱ)求函数f(x)的极值点;
(Ⅲ)证明对任意的正整数n,不等式ln(
1
n
+1)>
1
n2
-
1
n3
都成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}满足a1=1且an+1=(1+
1
n2+n
)an+
1
2n
(n≥1).
(Ⅰ)用数学归纳法证明:an≥2(n≥2);
(Ⅱ)已知不等式ln(1+x)<x对x>0成立,证明:an<e2(n≥1),其中无理数e=2.71828….

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+aln(x+1)+b(a,b∈R)在点(0,f(0))的切线方程为y=-x.
(1)求a,b的值;
(2)当x∈[-
1
2
,1]
时,f(x)的图象与直线y=-x+m有两个不同的交点,求实数m的取值范围;
(3)证明对任意的正整数n,不等式ln(
1
n
+1)>
1
n2
-
1
n3
都成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=blnx-(x-1)2,其中b为常数.
(Ⅰ)若b=4,求函数f(x)的单调递减区间;
(II)若函数f(x)有极值点,求b的取值范围及f(x)的极值点;
(Ⅲ) 证明:对任意不小于3的正整数n,不等式ln(n+1)-lnn>
1n2
都成立.

查看答案和解析>>

同步练习册答案