精英家教网 > 高中数学 > 题目详情
盒子中有大小相同的球6个,其中标号为1的球2个,标号为2的球3个.标号为3的球1个,第一次从盒子中任取1个球,放回后第二次再任取1个球 (假设取到每个球的可能性都相同).记第一次与第二次取到球的标号之和为ξ.
(1)求随机变量ξ的分布列:
(2)求随机变量ξ的期望Eξ.
(1)由题意可得,随机变量ξ的取值是2、3、4、5、6.
则随机变量ξ的分布列如下:
P(ξ=2)=
C21
?
C21
C61
?
C61
=
1
9

P(ξ=3)=
2C12
?
C13
C16
?
C16
=
1
3

P(ξ=4)=
2C11
?
C12
+
C13
?
C23
C16
?
C16
=
13
36

P(ξ=5)=
2C11
?
C12
C16
?
C16
=
1
6

P(ξ=6)=
2C11
?
C11
C16
?
C16
=
1
36

∴变量ξ的分布列是:

精英家教网

(2)随机变量ξ的期望
Eξ=2×
1
9
+3×
1
3
+4×
13
36
+5×
1
6
+6×
1
36
=
11
3
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

18、盒子中有大小相同的球10个,其中标号为1的球3个,标号为2的球4个,标号为5的球3个,第一次从盒子中任取1个球,放回后第二次再任取1个球(假设取到每个球的可能性都相同).记第一次与第二次取到球的标号之和为ε.求随机变量ε的分布及期望Eε.

查看答案和解析>>

科目:高中数学 来源: 题型:

盒子中有大小相同的球6个,其中标号为1的球2个,标号为2的球3个.标号为3的球1个,第一次从盒子中任取1个球,放回后第二次再任取1个球 (假设取到每个球的可能性都相同).记第一次与第二次取到球的标号之和为ξ.
(1)求随机变量ξ的分布列:
(2)求随机变量ξ的期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:

盒子中有大小相同的球10个,其中标号为1的球3个,标号为2的球4个,标号为5的球3个,第一次从盒子中任取1个球,放回后第二次再任取1个球(假设取到每个球的可能性都相同).记第一次与第二次取到球的标号之和为ξ.
(Ⅰ)求随机变量ξ的分布列;
(Ⅱ)求随机变量ξ的期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:

(04年浙江卷理)(本题满分12分)
盒子中有大小相同的球10个,其中标号为1的球3个,标号为2的球4个,标号为5的球3个。第一次从盒子中任取1个球,放回后第二次再任取1个球(假设取到每个球的可能性都相同),记第一次与第二次取到球的标号之和为x
(1)求随机变量x的分布列;
(2)求随机变量x的期望Ex

查看答案和解析>>

科目:高中数学 来源:2010-2011学年广东省潮州市金山中学高二(下)4月模块数学试卷(理科)(解析版) 题型:解答题

盒子中有大小相同的球6个,其中标号为1的球2个,标号为2的球3个.标号为3的球1个,第一次从盒子中任取1个球,放回后第二次再任取1个球 (假设取到每个球的可能性都相同).记第一次与第二次取到球的标号之和为ξ.
(1)求随机变量ξ的分布列:
(2)求随机变量ξ的期望Eξ.

查看答案和解析>>

同步练习册答案