精英家教网 > 高中数学 > 题目详情
设函数f(x)=x3+bx2+cx(x∈R),已知g(x)=f(x)-f′(x)是奇函数.

(1)求bc的值;

(2)求g(x)的单调区间.

解析:(1)∵fx)=x3+bx2+cx,

(x)=3x2+2bx+c.

从而g(x)=f(x)-(x)=x3+bx2+cx-(3x2+2bx+c)=x3+(b-3)x2+(c-2b)x-c是一个奇函数,

所以g(0)=0得c=0,由奇函数定义得b=3.

(2)由(1)知g(x)=x3-6x,从而(x)=3x2-6,由此可知,

(-∞,-)和(,+∞)是函数gx)的单调递增区间;

(-,)是函数g(x)的单调递减区间.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=x3-
92
x2+6x-a

(1)对于任意实数x,f′(x)≥m恒成立,求m的最大值;
(2)若方程f(x)=0有且仅有一个实根,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3-(
12
)x-2
,则其零点所在区间为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3-(
1
2
)x-2
,则其零点所在区间为(  )
A、(0,1)
B、(1,2)
C、(2,3)
D、(3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3-tx+
t-1
2
,t∈R

(I)试讨论函数f(x)在区间[0,1]上的单调性:
(II)求最小的实数h,使得对任意x∈[0,1]及任意实数t,f(x)+|
t-1
2
|+h≥0
恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
x
3
 
-3a
x
2
 
+3bx
的图象与直线12x+y-1=0相切于点(1,-11).
(I)求a,b的值;
(II)如果函数g(x)=f(x)+c有三个不同零点,求c的取值范围.

查看答案和解析>>

同步练习册答案