精英家教网 > 高中数学 > 题目详情
在△ABC中,内角A,B,C的对边分别为a,b,c,已知a,b,c成等比数列,且cosB=
3
4

(1)若
BA
BC
=
3
2
,求a+c的值;
(2)求
cosA
sinA
+
cosC
sinC
的值.
(1)由
BA
BC
=
3
2
 可得 ac•cosB=
3
2
,因为 cosB=
3
4
,所以b2=ac=2.
由余弦定理b2=a2+c2-2accosB,得a2+c2=b2+2accosB=5,
则(a+c)2=a2+c2+2ac=9,故a+c=3.                               
(2)由cosB=
3
4
可得 sinB=
7
4

由b2=ac及正弦定理得sin2B=sinAsinC,
于是 
cosA
sinA
+
cosC
sinC
=
sinCcosA+cosCsinA
sinAsinC
=
sin(A+C)
sin2B
=
sinB
sin2B
=
1
sinB
=
4
7
7
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•天津)在△ABC中,内角A,B,C所对的边分别是a,b,c,已知a=2,c=
2
,cosA=-
2
4

(1)求sinC和b的值;
(2)求cos(2A+
π
3
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A、B、C所对边长分别为a、b、c,已知a2-c2=b,且sinAcosC=3cosAsinC,则b=
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C的对边分别为a,b,c,且a,b是方程x2-2
3
x+2=0的两根,2cos(A+B)=1,则△ABC的面积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C所对的边分别是a,b,c.已知A=45°,a=6,b=3
2
,则B的大小为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C所对的边分别是a,b,c,已知B=60°,不等式x2-4x+1<0的解集为{x|a<x<c},则b=
13
13

查看答案和解析>>

同步练习册答案