精英家教网 > 高中数学 > 题目详情

已知椭圆数学公式满足条件:m,n,m+n成等差数列,m,n,mn成等比数列,则椭圆离心率为


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
B
分析:根据满足条件:m,n,m+n成等差数列,m,n,mn成等比数列,结合等差中项与等比中项,列方程组可解得m,n的值,再求椭圆的离心率即可.
解答:
∴m2=2m,又m≠0,得m=2,n=4
∴椭圆为
c2=4-2=2,得 ,又a=2,

则椭圆离心率为:
故选B.
点评:表面看题意涉及的知识点较多,但经分析后,运用一些等差数列的基本的概念与知识即可解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C的对称中心为坐标原点O,焦点在x轴上,左右焦点分别为F1,F2,且|F1F2|=2
5
,点(
5
4
3
)
在该椭圆上.
(1)求椭圆C的方程;
(2)设椭圆C上的一点p在第一象限,且满足PF1⊥PF2,⊙O的方程为x2+y2=4.求点p坐标,并判断直线pF2与⊙O的位置关系;
(3)设点A为椭圆的左顶点,是否存在不同于点A的定点B,对于⊙O上任意一点M,都有
MB
MA
为常数,若存在,求所有满足条件的点B的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•深圳二模)已知椭圆C的中心在原点,焦点在x轴上,点F1、F2分别是椭圆的左、右焦点,在椭圆C的右准线上的点P(2,
3
)
,满足线段PF1的中垂线过点F2.直线l:y=kx+m为动直线,且直线l与椭圆C交于不同的两点A、B.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若在椭圆C上存在点Q,满足
OA
+
OB
OQ
(O为坐标原点),求实数λ的取值范围;
(Ⅲ)在(Ⅱ)的条件下,当λ取何值时,△ABO的面积最大,并求出这个最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
,A、B是长轴的左、右端点,动点M满足MB⊥AB,联结AM,交椭圆于点P.
(1)当a=2,b=
2
时,设M(2,2),求
OP
OM
的值;
(2)若
OP
OM
为常数,探究a、b满足的条件?并说明理由;
(3)直接写出
OP
OM
为常数的一个不同于(2)结论类型的几何条件.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年浙江省绍兴一中高三(下)回头考试数学试卷(文科)(解析版) 题型:选择题

已知椭圆满足条件:m,n,m+n成等差数列,m,n,mn成等比数列,则椭圆离心率为( )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案