精英家教网 > 高中数学 > 题目详情

已知α是锐角,则=  

考点:

对数的运算性质;同角三角函数间的基本关系.

专题:

计算题.

分析:

先利用同角三角函数的基本关系化简,然后由对数的运算性质得出结果.

解答:

解:=logcosα(1+)=logcosα)=logcosα)=﹣2

故答案为:﹣2.

点评:

此题考查了对数的运算性质以及同角三角函数的基本关系,属于基础题.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列命题:①存在实数x,使得sinx+cosx=
π
3
;②函数y=sinx的图象向右平移
π
4
个单位,得到y=sin(2x+
π
4
)
的图象;③函数y=sin(
2
3
x-
7
2
π)
是偶函数;④已知α,β是锐角三角形ABC的两个内角,则sinα>cosβ.其中正确的命题的个数为(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A是锐角△ABC的内角,则“cosA=
1
2
”是“sinA=
3
2
”的(  )
A、充分而不必要条件
B、必要而不充分条件
C、充分必要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

已知O是锐角三角形ABC的外接圆的圆心,角A,B,C的对边分别为a,b,c,且A=
π
4
,若
cosB
sinC
AB
+
cosC
sinB
AC
=2m
AO
,则m,的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:若a,b∈R,则|a|+|b|>1是|a+b|>1的充分不必要条件;命题q:已知A,B,C是锐角三角形ABC的三个内角;向量
m
=(1+sinA,1+cosA),
n
=(1+sinB,-1-cosB)
,则
m
n
的夹角是锐角.则(  )
A、p假q真B、P且q为真
C、p真q假D、p或q为假

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数f(x)满足f(-x)=f(x),f(x+1)=
2
f(x)
(f(x)≠0),且在区间(2013,2014)上单调递增,已知α,β是锐角三角形的两个内角,则f(sinα)、f(cosβ)的大小关系是(  )
A、f(sinα)<f(cosβ)
B、f(sinα)>f(cosβ)
C、f(sinα)=f(cosβ)
D、以上情况均有可能

查看答案和解析>>

同步练习册答案