精英家教网 > 高中数学 > 题目详情
已知:关于实数x的方程x2-(t-2)x+t2+3t+5=0有两个实根,向量
a
=(-1,1,1)
b
=(1,0,-1)
c
=
a
+t
b
,当|
c
|
取得最小值时,求:实数t的值及此时|
c
|
的值.
∵关于实数x的方程x2-(t-2)x+t2+3t+5=0有两个实根,
∴△=(t-2)2-4(t2+3t+5)≥0----------(2分)
解得:-4≤t≤-
4
3
-----------(2分)       
∵向量
a
=(-1,1,1)
b
=(1,0,-1)

|
c
|2=(
a
+t
b
)2=2(t-1)2+1
-----------(3分)
t=-
4
3
|
c
|min=
107
9
---------------(3分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ex(e为自然对数的底数),g(x)=ln(f(x)+a)(a为常数),g(x)是实数集R上的奇函数.
(1)求证:f(x)≥x+1(x∈R);
(2)讨论关于x的方程:lng(x)=g(x)•(x2-2ex+m)(m∈R)的根的个数;
(3)设n∈N*,证明:(
1
n
)n+(
2
n
)n+(
3
n
)n+…+(
n
n
)n
e
e-1
(e为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:关于实数x的方程x2-(t-2)x+t2+3t+5=0有两个实根,向量
a
=(-1,1,1)
b
=(1,0,-1)
c
=
a
+t
b
,当|
c
|
取得最小值时,求:实数t的值及此时|
c
|
的值.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年湖北省黄冈中学高三(上)摸底数学试卷(理科)(解析版) 题型:解答题

已知函数f(x)=ex(e为自然对数的底数),g(x)=ln(f(x)+a)(a为常数),g(x)是实数集R上的奇函数.
(1)求证:f(x)≥x+1(x∈R);
(2)讨论关于x的方程:lng(x)=g(x)•(x2-2ex+m)(m∈R)的根的个数;
(3)设n∈N*,证明:(e为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源:2008-2009学年重庆一中高三(上)10月月考数学试卷(理科)(解析版) 题型:解答题

已知函数f(x)=ex(e为自然对数的底数),g(x)=ln(f(x)+a)(a为常数),g(x)是实数集R上的奇函数.
(1)求证:f(x)≥x+1(x∈R);
(2)讨论关于x的方程:lng(x)=g(x)•(x2-2ex+m)(m∈R)的根的个数;
(3)设n∈N*,证明:(e为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源:2010年江西师大附中高考数学三模试卷(理科)(解析版) 题型:解答题

已知函数f(x)=ex(e为自然对数的底数),g(x)=ln(f(x)+a)(a为常数),g(x)是实数集R上的奇函数.
(1)求证:f(x)≥x+1(x∈R);
(2)讨论关于x的方程:lng(x)=g(x)•(x2-2ex+m)(m∈R)的根的个数;
(3)设n∈N*,证明:(e为自然对数的底数).

查看答案和解析>>

同步练习册答案