精英家教网 > 高中数学 > 题目详情
(2012•温州一模)已知函数f(x)=(2x+a)•ex(e为自然对数的底数).
(1)求函数f(x)的极小值;
(2)对区间[-1,1]内的一切实数x,都有-2≤f(x)≤e2成立,求实数a的取值范围.
分析:(1)求导函数,确定函数的单调性,即可求出函数f(x)的极小值;
(2)分类讨论,求出函数在区间[-1,1]内的最大值与最小值,根据-2≤f(x)≤e2成立,即可求实数a的取值范围.
解答:解:(1)f′(x)=(2x+a+2)•ex
x<-
a
2
-1
时,f′(x)<0,当x>-
a
2
-1
时,f′(x)>0,
∴函数在(-∞,-
a
2
-1)
上为减函数,在(-
a
2
-1,+∞)
上为增函数,
x=-
a
2
-1
时,函数取得极小值,极小值为f(-
a
2
-1)=-2e
a
2
-1

(2)由(1)知-
a
2
-1≤-1
,即a≥0时,f(x)在[-1,1]上为增函数
∴f(x)max=f(1),f(x)min=f(-1)
∵对区间[-1,1]内的一切实数x,都有-2≤f(x)≤e2成立,
f(-1)≥-2
f(1)≤e2

(a-2)e-1≥-2
(a+2)e≤e2

∴0≤a≤e-2
-
a
2
-1≥1
,即a≤-4时,f(x)在[-1,1]上为减函数
∴f(x)max=f(-1),f(x)min=f(1)
∵对区间[-1,1]内的一切实数x,都有-2≤f(x)≤e2成立,
f(1)≥-2
f(-1)≤e2

(a+2)e≥-2
(a-2)e-1e2
,无解;
-1<-
a
2
-1<1
,即-4<a<0时,f(x)在[-1,-
a
2
-1
)上为减函数,在[-
a
2
-1
,1)上为增函数
∴f(x)max={f(-1),f(1)},f(x)min=f(-
a
2
-1)

(a+2)e≤e2
(a-2)e-1e2
-2e
a
2
-1
≥-2

∴-2≤a<0
综上,a的取值范围为-2≤a≤e-2.
点评:本题考查导数知识的运用,考查函数的单调性与极值,考查恒成立问题,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•温州一模)已知函数f(x)满足f(x)=2f(
1
x
)
,当x∈[1,3]时,f(x)=lnx,若在区间[
1
3
,3]
内,函数g(x)=f(x)-ax,有三个不同的零点,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•温州一模)如图,在矩形ABCD中,AB=8,BC=4,E,F,G,H分别为四边的中点,且都在坐标轴上,设
OP
OF
CQ
CF
(λ≠0).
(Ⅰ)求直线EP与GQ的交点M的轨迹Γ的方程;
(Ⅱ)过圆x2+y2=r2(0<r<2)上一点N作圆的切线与轨迹Γ交于S,T两点,若
NS
NT
+r2=0
,试求出r的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•温州一模)如图,在△ABC中,AD⊥BC,垂足为D,且BD:DC:AD=2:3:6.
(Ⅰ)求∠BAC的大小;
(Ⅱ)设E为AB的中点,已知△ABC的面积为15,求CE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•温州一模)某高校进行自主招生面试时的程序如下:共设3道题,每道题答对给10分、答错倒扣5分(每道题都必须回答,但相互不影响).设某学生对每道题答对的概率都为
23
,则该学生在面试时得分的期望值为
15
15
分.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•温州一模)若圆x2+y2-4x+2my+m+6=0与y轴的两个交点A,B位于原点的同侧,则实数m的取值范围是(  )

查看答案和解析>>

同步练习册答案