精英家教网 > 高中数学 > 题目详情
已知函数f(x)=(2x-a)2+(2-x+a)2,x∈[-1,1].
(1)求f(x)的最小值(用a表示);
(2)记g(x)=f(x)-2a2,如果函数g(x)有零点,求实数a的取值范围.
【答案】分析:(1)先把函数f(x)化简为f(x)=(2x-2-x2-2a(2x-2-x)+2a2+2的形式,令t=2x-2-x,则f(x)可看作关于t的二次函数,根据x的范围求出t的范围,再利用二次函数求最值的方法求出f(x)的最小值.
(2)关于x的方程f(x)=2a2有解,即方程t2-2at+2=0在[-]上有解,而t≠0把t与a分离,利用函数的单调性求范围即可.
解答:解:(1)f(x)=(2x-a)2+(2-x+a)2=22x+2-2x-2a(2x-2-x)+2a2=(2x-2-x2-2a(2x-2-x)+2a2+2
令t=2x-2-x,则当x∈[-1,1]时,t关于x的函数是单调递增
∴t∈[-],此时f(x)=t2-2at+2a2+2=(t-a)2+a2+2
当a<-时,f(x)min=f(-)=2a2+3a+
当-≤a≤时,f(x)min=a2+2
当a>时,f(x)min=f()=2a2-3a+
(2)函数g(x)有零点,则方程f(x)=2a2有解,即方程t2-2at+2=0在[-]上有解,而t≠0
∴2a=t+
令y=t+,则y′=1-,∴函数在(0,)上单调递减,()上单调递增
∴t+≥2
∵t+为奇函数,∴当t∈(-,0)时,t+≤-2
∴a的取值范围是(-∞,-]∪[,+∞).
点评:本题考查二次函数与其它函数的复合函数的最值的求法,考查函数的零点,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案