精英家教网 > 高中数学 > 题目详情
16.若直线ax+by=1与圆x2+y2=1相交,则点P(a,b)与圆的位置关系是(  )
A.在圆上B.在圆外C.在圆内D.不能确定

分析 因为直线与圆相交,所以圆心到直线的距离小于半径,求出圆心坐标,利用两点间的距离公式求出圆心到该直线的距离小于圆的半径得到关于a和b的关系式,然后再根据点与圆心的距离与半径比较即可得到P的位置.

解答 解:由圆x2+y2=1得到圆心坐标为(0,0),半径为1,因为直线与圆相交,
所以圆心到该直线的距离d=$\frac{|-1|}{\sqrt{{a}^{2}{+b}^{2}}}$<1,
即a2+b2>1即P点到原点的距离大于半径,所以P在圆外.
故选:B.

点评 考查学生掌握直线与圆的各种位置关系所满足的条件,灵活运用点到直线的距离公式解决数学问题的那里.以及会判断点与圆的位置关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.下列命题中真命题的序号为(1).
(1)命题“?x>0,x2-x≤0”的否定是“?x>0,x2-x>0.”
(2)若A>B,则sinA>sinB.
(3)已知数列{an},则“an,an+1,an+2成等比数列”是“$a_{n+1}^2={a_n}{a_{n+2}}$”的充要条件
(4)已知函数$f(x)=lgx+\frac{1}{lgx}$,则函数f(x)的最小值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知${(1+x)^{10}}={a_0}+{a_1}(1-x)+{a_2}{(1-x)^2}+…+{a_{10}}{(1-x)^{10}}$,则a9等于-20.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.过抛物线C:y2=4x的焦点F的直线l交C于A,B两点,点M(-1,2),若$\overrightarrow{MA}•\overrightarrow{MB}=0$,则直线l的斜率k=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=ax2+bx+c(b>a),若对任意x∈R,f(x)≥0恒成立,则$\frac{a+b+c}{b-a}$的最小值为(  )
A.3B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在△ABC中,边a、b、c分别是角A、B、C的对边,若bcosC=(3a-c)cosB,则cosB=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.$sin\frac{2017}{6}π$的值等(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若直线ax+by-1=0与圆x2+y2=1相切,则点P(a,b)的位置是(  )
A.在圆上B.在圆外C.在圆内D.以上皆有可能

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=aex-x2-(2a+1)x,若函数f(x)在区间(0,ln2)上有最值,则实数a的取值范围是(  )
A.(-∞,-1)B.(-1,0)C.(-2,-1)D.(-∞,0)∪(0,1)

查看答案和解析>>

同步练习册答案