精英家教网 > 高中数学 > 题目详情
已知数列{an}满足a1=2 ,an+1=3an+3n+1-2n (n∈N*)
(1)设bn=
an-2n
3n
,证明:数列{bn}为等差数列,并求数列{an}的通项公式;
(2)求数列{an}的前n项和Sn
(1)证明:∵bn+1-bn=
an+1-2n+1
3n+1
-
an-2n
3n
=
3an+3n+1-2n-2n+1
3n+1
-
an-2n
3n
=1
,…(2分)
∴{bn}为等差数列.
又b1=0,∴bn=n-1.…(4分)
an=(n-1)•3n+2n.…(6分)
(2)设Tn=0•31+1•32+…+(n-1)•3n,则
3Tn=0•32+1•33+…+(n-1)•3n+1
∴两式相减可得-2Tn=32+…+3n-(n-1)•3n+1=
9(1-3n-1)
1-3
-(n-1)•3n+1
.…(10分)
Tn=
9-3n+1
4
+
(n-1)•3n+1
2
=
(2n-3)•3n+1+9
4

Sn=Tn+(2+22+…+2n)=
(2n-3)3n+1+2n+3+1
4
.   …(14分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1且an+1=
3+4an
12-4an
, n∈N*

(1)若数列{bn}满足:bn=
1
an-
1
2
(n∈N*)
,试证明数列bn-1是等比数列;
(2)求数列{anbn}的前n项和Sn
(3)数列{an-bn}是否存在最大项,如果存在求出,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足
1
2
a1+
1
22
a2+
1
23
a3+…+
1
2n
an=2n+1
则{an}的通项公式
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求数列{an}的通项公式;
(2)证明:对于一切正整数n,不等式a1•a2•…an<2•n!

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足an+1=|an-1|(n∈N*
(1)若a1=
54
,求an
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k项的和S3k(用k,a表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京模拟)已知数列{an}满足an+1=an+2,且a1=1,那么它的通项公式an等于
2n-1
2n-1

查看答案和解析>>

同步练习册答案