精英家教网 > 高中数学 > 题目详情
求椭圆=1的长轴长、短半轴长、顶点坐标.

解:由方程=1知a=8,b=6,所以长轴长为2a=16,短半轴长b=6,四个顶点坐标分别为(8,0),(-8,0),(0,6),(0,-6).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
上两点P、Q在x轴上的射影分别为椭圆的左、右焦点,且P、Q两点的连线的斜率为
2
2

(1)求椭圆的离心率e的大小;
(2)若以PQ为直径的圆与直线x+y+6=0相切,求椭圆C的标准方程;
(3)设点M(0,3)在椭圆内部,若椭圆C上的点到点M的最远距离不大于5
2
,求椭圆C的短轴长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•江门二模)已知椭圆C1和抛物线C2有公共焦点F(1,0),C1的中心和C2的顶点都在坐标原点,直线l过点M(4,0).
(1)写出抛物线C2的标准方程;
(2)若坐标原点O关于直线l的对称点P在抛物线C2上,直线l与椭圆C1有公共点,求椭圆C1C的长轴长的最小值.

查看答案和解析>>

科目:高中数学 来源:浙江省台州中学2012届高三上学期第三次统练测数学文科试题 题型:044

如图所示,已知椭圆C1和抛物线C2有公共焦点F(1,0),C1的中心和C2的顶点都在坐标原点,过点M(4,0)的直线l与抛物线C2分别相交于A,B两点

(1)写出抛物线C2的标准方程;

(2)若,求直线l的方程;

(3)若坐标原点O关于直线l的对称点P在抛物线C2上,直线l与椭圆C1有公共点,求椭圆C1的长轴长的最小值.

查看答案和解析>>

科目:高中数学 来源:2013年广东省江门、佛山市高考数学二模试卷(文科)(解析版) 题型:解答题

已知椭圆C1和抛物线C2有公共焦点F(1,0),C1的中心和C2的顶点都在坐标原点,直线l过点M(4,0).
(1)写出抛物线C2的标准方程;
(2)若坐标原点O关于直线l的对称点P在抛物线C2上,直线l与椭圆C1有公共点,求椭圆C1C的长轴长的最小值.

查看答案和解析>>

同步练习册答案