精英家教网 > 高中数学 > 题目详情

已知数列{an},{bn}满足a1=1,且an,an+1是函数f(x)=x2-bnx+2n的两个零点,则b5等于


  1. A.
    24
  2. B.
    32
  3. C.
    48
  4. D.
    12
D
分析:先利用零点的意义结合根与系数的关系得出an•an+1=2n,再写一式,两式相除,可得数列{an}中奇数项成等比数列,偶数项也成等比数列,求出a6,a5后,可求b5
解答:由已知,an•an+1=2n,所以an+1•an+2=2n+1
两式相除得 =2
所以a1,a3,a5,…成等比数列,a2,a4,a6,…成等比数列.
而a1=1,a2=2,所以a6=2×22=8,a5=1×22=4,
又an+an+1=bn,所以b5=a5+a6=12.
故选D.
点评:本题考查了韦达定理的应用,等比数列的判定及通项公式求解,考查转化、构造、计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足:a1<0,
an+1
an
=
1
2
,则数列{an}是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1,nan+1=2(n十1)an+n(n+1),(n∈N*),
(I)若bn=
ann
+1
,试证明数列{bn}为等比数列;
(II)求数列{an}的通项公式an与前n项和Sn.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•顺义区二模)已知数列{an}中,an=-4n+5,等比数列{bn}的公比q满足q=an-an-1(n≥2),且b1=a2,则|b1|+|b2|+…+|bn|=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+3n+1,则数列{an}的通项公式为
an=
5
      n=1
2n+2
    n≥2
an=
5
      n=1
2n+2
    n≥2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+n,那么它的通项公式为an=
2n
2n

查看答案和解析>>

同步练习册答案