精英家教网 > 高中数学 > 题目详情
曲线y=ex过点A(0,1)的切线斜率为(  )
分析:求出函数y=ex的导函数,再将横坐标x=0代入导函数,求出的导数值即为所求切线斜率.
解答:解:由题意,求导数得y'=ex
∴切线的斜率k=
y′|
 
x=0
=e0=1,
故选:A
点评:本题给出曲线y=ex的图象,求曲线在点A(0,1)的切线斜率.着重考查了求导法则和导数的几何意义等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

平面直角坐标系中,过原点O的直线l与曲线y=ex-1交于不同的A,B两点,分别过点A,B作y轴的平行线,与曲线y=lnx交于点C,D,则直线CD的斜率是
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•德阳三模)已知函数f(x)=[x2-(a+2)x-2a2+a+2]ex
(1)求函数f(x)的单调增区间;
(2)设a>0,x=2是f(x)的极值点,函数h(x)=xe-xf(x).若过点A(0,m)(m≠0)可作曲线y=h(x)的三条切线,求实数m的取值范围;
(3)设a>1,函数g(x)=(a2+4)ex,若存在x1∈[0,1]、x2∈[0,1],使|f(x1)-f(x2)|<12,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012年四川省德阳市高考数学三模试卷(理科)(解析版) 题型:解答题

已知函数f(x)=[x2-(a+2)x-2a2+a+2]ex
(1)求函数f(x)的单调增区间;
(2)设a>0,x=2是f(x)的极值点,函数h(x)=xe-xf(x).若过点A(0,m)(m≠0)可作曲线y=h(x)的三条切线,求实数m的取值范围;
(3)设a>1,函数g(x)=(a2+4)ex,若存在x1∈[0,1]、x2∈[0,1],使|f(x1)-f(x2)|<12,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省嘉兴市海宁市高三(下)期初数学试卷(理科)(解析版) 题型:填空题

平面直角坐标系中,过原点O的直线l与曲线y=ex-1交于不同的A,B两点,分别过点A,B作y轴的平行线,与曲线y=lnx交于点C,D,则直线CD的斜率是   

查看答案和解析>>

同步练习册答案