精英家教网 > 高中数学 > 题目详情

如图,在四棱锥中,底面是边长为的菱形,,底面, ,的中点,的中点.

(Ⅰ)证明:直线平面

(Ⅱ)求异面直线所成角的大小;

 

【答案】

(Ⅰ)详见解析;(Ⅱ)异面直线所成角为

【解析】

试题分析:(Ⅰ)证明:直线平面,证明线面平行,首先证明线线平行,可用三角形的中位线平行,也可用平行四边形的对边平行,本题虽有中点,但没直接的三角形,可考虑用平行四边形的对边平行,可取OD的中点G,连结CG,MG,证明四边形为平行四边形即可,也可取中点,连接,利用面面平行则线面平行,证平面平面即可.也可利用向量法,作于点P,如图,分别以,所在直线为轴建立坐标系,利用向量与平面的法向量垂直,即数量积等于零;(Ⅱ)求异面直线所成角的大小,分别写出异面直线对应向量的坐标,由向量的夹角公式即可求出.

试题解析:方法一(综合法)

(Ⅰ)取中点,连接   

         

(Ⅱ)

 为异面直线所成的角(或其补角),

连接 , ,,,

 ,  

所以 所成角的大小为 

方法二(向量法)

于点P,如图,分别以,所在直线为轴建立坐标系.

,

,

 (Ⅰ)

设平面的法向量为,则 

,  取,解得

..

(Ⅱ)设所成的角为, 

,    , 即所成角的大小为.

考点:线面平行的判断,异面直线所成的角.

 

练习册系列答案
相关习题

科目:高中数学 来源:2010-2011年广西省桂林中学高二下学期期中考试数学 题型:解答题

((本小题满分12分)
如图,在四棱锥中,底面是矩形.已知


(1)证明平面
(2)求异面直线所成的角的大小;
(3)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:2012届福建省三明市高三第一学期测试理科数学试卷 题型:解答题

如图,在四棱锥中,底面是菱形,,平面的中点,的中点.    

(Ⅰ) 求证:∥平面

(Ⅱ)求证:平面⊥平面

(Ⅲ)求平面与平面所成的锐二面角的大小.

 

 

 

查看答案和解析>>

科目:高中数学 来源:2013届上海市高二年级期终考试数学 题型:解答题

(本题满分16分)

如图,在四棱锥中,底面是矩形.已知

(1)证明平面

(2)求异面直线所成的角的大小;

(3)求二面角的大小.

 

 

 

 

 

查看答案和解析>>

科目:高中数学 来源:2010年江苏省高二下学期期末考试附加卷数学卷 题型:解答题

如图,在四棱锥中,底面是正方形,侧棱中点,作

(1)求PF:FB的值

(2)求平面与平面所成的锐二面角的正弦值。

 

 

查看答案和解析>>

科目:高中数学 来源:2011届浙江省高三6月考前冲刺卷数学理 题型:解答题

(本小题满分14分)

如图,在四棱锥中,底面为平行四边形,平面在棱上.

(Ⅰ)当时,求证平面

(Ⅱ)当二面角的大小为时,求直线与平面所成角的正弦值.

 

 

查看答案和解析>>

同步练习册答案