精英家教网 > 高中数学 > 题目详情

(8分) 对于,求证:.

(8分)

证明:(1)当,左右…………………2分

(2)假设n=k时不等式成立,即:………4分

那么,当时,左=

右……………………6分

时不等式成立

综上所述由(1)(2)对一切命题成立…………………8分

练习册系列答案
相关习题

科目:高中数学 来源:2013年上海市青浦区高考一模(即期末)数学试卷(解析版) 题型:解答题

(本题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.

我们把定义在上,且满足(其中常数满足)的函数叫做似周期函数.

(1)若某个似周期函数满足且图像关于直线对称.求证:函数是偶函数;

(2)当时,某个似周期函数在时的解析式为,求函数的解析式;

(3)对于确定的时,,试研究似周期函数函数在区间上是否可能是单调函数?若可能,求出的取值范围;若不可能,请说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年上海市徐汇区高三4月学习能力诊断理科数学试卷(解析版) 题型:解答题

第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分8分.

如果存在常数使得数列满足:若是数列中的一项,则也是数列中的一项,称数列为“兑换数列”,常数是它的“兑换系数”.

(1)若数列:是“兑换系数”为的“兑换数列”,求的值;

(2)已知有穷等差数列的项数是,所有项之和是,求证:数列是“兑换数列”,并用表示它的“兑换系数”;

(3)对于一个不少于3项,且各项皆为正整数的递增数列,是否有可能它既是等比数列,又是“兑换数列”?给出你的结论并说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年湖南省四市九校高三上学期12月月考理科数学 题型:解答题

(本小题满分12分)

在数列{an}中,a1=2,a2=8,且已知函数)在x=1时取得极值.(Ⅰ)求证:数列{an+1—2an}是等比数列,(Ⅱ)求数列的通项an;(Ⅲ)设,且对于恒成立,求实数m的取值范围.

 

查看答案和解析>>

同步练习册答案