精英家教网 > 高中数学 > 题目详情
设A(x1,y1),B(x2,y2)是椭圆+=1(a>b>0)的两点,=(),=(),且=0,椭圆离心率e=,短轴长为2,O为坐标原点.
(1)求椭圆方程;
(2)若存在斜率为k的直线AB过椭圆的焦点F(0,c)(c为半焦距),求k的值;
(3)试问△AOB的面积是否为定值?若是,求出该定值;若不是,说明理由.
解:(1)∵椭圆离心率e=,短轴长为2,

解得a=2,b=1
∴所求椭圆方程为
(2)设AB方程为y=kx+,与椭圆方程联立,
消元可得(k2+4)x2+2kx﹣1=0

由已知=(),=(),且=0,
+=0
(k)=0
∴k=±
(3)当A为顶点时,B必为顶点,则△AOB的面积是1;
当A,B不为顶点时,
设AB方程为y=kx+m与椭圆方程联立,
消元可得(k2+4)x2+2kmx+m2﹣4=0

=0,
(kx2+m)=0
∴2m2﹣k2=4
∴△AOB的面积是|m||x1﹣x2|==
∴三角形的面积为定值1.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线C:x2=4y的焦点为F,直线l过点F交抛物线C于A、B两点.
(Ⅰ)设A(x1,y1),B(x2,y2),求
1
y1
+
1
y2
的取值范围;
(Ⅱ)是否存在定点Q,使得无论AB怎样运动都有∠AQF=∠BQF?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

设A(x1,y1),B(x2,y2)是函数f(x)=
1
2
+log2
x
1-x
的图象上两点,且
OM
=
1
2
(
OA
+
OB
)
,O为坐标原点,已知点M的横坐标为
1
2

(Ⅰ)求证:点M的纵坐标为定值;
(Ⅱ)定义定义Sn=
n-1
i=1
f(
i
n
)=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*且n≥2,求S2011
(Ⅲ)对于(Ⅱ)中的Sn,设an=
1
2Sn+1
(n∈N*)
.若对于任意n∈N*,不等式kan3-3an2+1>0恒成立,试求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设A(x1,y1),B(x2,y2)是椭圆
y2
a2
+
x2
b2
=1(a>b>0)
上的两点,已知O为坐标原点,椭圆的离心率e=
3
2
,短轴长为2,且
m
=(
x1
b
y1
a
),
n
=(
x2
b
y2
a
)
,若
m
n
=0

(Ⅰ)求椭圆的方程;
(Ⅱ)若直线AB过椭圆的焦点F(0,c)(c为半焦距),求△AOB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

设A(x1,y1),B(x2,y2)是函数f(x)=
1
2
+log2
x
1-x
图象上任意两点,且
OM
=
1
2
OA
+
OB
),已知点M的横坐标为
1
2
,且有Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
),其中n∈N*且n≥2,
(1)求点M的纵坐标值;
(2)求s2,s3,s4及Sn
(3)已知an=
1
(Sn+1)(Sn+1+1)
,其中n∈N*,且Tn为数列{an}的前n项和,若Tn≤λ(Sn+1+1)对一切n∈N*都成立,试求λ的最小正整数值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设A(x1,y1)、B(x2,y2)、C(x3,y3)是抛物线y=x2上的三个动点,其中x3>x2≥0,△ABC是以B为直角顶点的等腰直角三角形.
(1)求证:直线BC的斜率等于x2+x3,也等于
x2-x1x3-x2

(2)求A、C两点之间距离的最小值.

查看答案和解析>>

同步练习册答案