精英家教网 > 高中数学 > 题目详情
已知数列{an}满足:a1=1,a2=2,2an=an-1+an+1(n≥2,n∈N*),数列{bn}满足b1=2,anbn+1=2an+1bn
(Ⅰ)求数列{an}的通项an; 
(Ⅱ)求证:数列{
bn
n
}
为等比数列;并求数列{bn}的通项公式.
(I)∵2an=an-1+an+1(n≥2,n∈N*)
∴数列{an}是等差数列
又∵a1=1,a2=2,
∴d=1,an=1+(n-1)×1=n
(II)证明:an=n
∵anbn+1=2an+1bn
∴nbn+1=2(n+1)bn
bn+1
n+1
= 2•
bn
n
b1
1
=2

∴{
bn
n
}是以2为首项以2为公比的等比数列
由等比数列的通项公式可得,
bn
n
=2•2n-1
=2n
bn=n•2n
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1且an+1=
3+4an
12-4an
, n∈N*

(1)若数列{bn}满足:bn=
1
an-
1
2
(n∈N*)
,试证明数列bn-1是等比数列;
(2)求数列{anbn}的前n项和Sn
(3)数列{an-bn}是否存在最大项,如果存在求出,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足
1
2
a1+
1
22
a2+
1
23
a3+…+
1
2n
an=2n+1
则{an}的通项公式
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求数列{an}的通项公式;
(2)证明:对于一切正整数n,不等式a1•a2•…an<2•n!

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足an+1=|an-1|(n∈N*
(1)若a1=
54
,求an
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k项的和S3k(用k,a表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京模拟)已知数列{an}满足an+1=an+2,且a1=1,那么它的通项公式an等于
2n-1
2n-1

查看答案和解析>>

同步练习册答案