精英家教网 > 高中数学 > 题目详情
在△ABC中,已知tan
A+B
2
=sinC
,则(  )
分析:由于tan
A+B
2
=tan
π-C
2
=cot
C
2
,结合tan
A+B
2
=sinC
可求得cosC=0,从而可从选项中得到答案.
解答:解:∵tan
A+B
2
=tan
π-C
2
=cot
C
2
=
cos
C
2
sin
C
2
=sinC=2sin
C
2
cos
C
2
cos
C
2
≠0

∴1-2sin2
C
2
=0,即cosC=0,又0<C<π,
∴C=
π
2

∴tanAcotB=tanA•tanA,不一定为1,故A不正确;
sinA•sinB=sinA•cosA=
1
2
sin2A 
1
2
故排除B;
sin2A+cos2B=sin2A+sin2A不一定为1,排除C,
cos2A+cos2B=cos2A+sin2A=1=sin2C,D正确;
故选D.
点评:本题考查拌脚的三角函数,着重考查是诱导公式的熟练应用,关键在于确定C=
π
2
,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,已知B(-3,0),C(3,0),D为线段BC上一点,
AD
BC
=0
,H是△ABC的垂心,且
AH
=3
HD

(Ⅰ)求点H的轨迹M的方程;
(Ⅱ)若过C点且斜率为-
1
2
的直线与轨迹M交于点P,点Q(t,0)是x轴上任意一点,求当△CPQ为锐角三角形时t的取值范围.

查看答案和解析>>

科目:高中数学 来源:南通高考密卷·数学(理) 题型:013

在△ABC中,已知三边a,b,c成等差数列,且有sinB+cosB=t,则t的取值范围是

[  ]

A.(0,)
B.(1,)
C.(0,1)
D.(,+∞)

查看答案和解析>>

科目:高中数学 来源:上杭一中、武平一中、长汀一中、漳平一中2006-2007学年第一学期高三期末考数学试题(理) 题型:044

在△ABC中,已知B(-3,0),C(3,0),D为线段BC上一点,是△ABC的垂心,且

(1)求点H的轨迹M的方程;

(2)若过C点且斜率为的直线与轨迹M交于点P,点Q(t,0)是x轴上任意一点,

求:当△CPQ为锐角三角形时t的取值范围.

查看答案和解析>>

科目:高中数学 来源:2004年江苏省无锡市高三调研数学试卷(解析版) 题型:解答题

在△ABC中,已知B(-3,0),C(3,0),D为线段BC上一点,,H是△ABC的垂心,且
(Ⅰ)求点H的轨迹M的方程;
(Ⅱ)若过C点且斜率为的直线与轨迹M交于点P,点Q(t,0)是x轴上任意一点,求当△CPQ为锐角三角形时t的取值范围.

查看答案和解析>>

科目:高中数学 来源:江苏省陆慕高级中学09-10学年高二上学期第一次测试 题型:解答题

 

在△ABC中,已知

  (Ⅰ) 求证: ||=||;

(Ⅱ) 若||=||=,求|t|的最小值以及相应的t的值.

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

同步练习册答案