精英家教网 > 高中数学 > 题目详情
19.若函数f(x)在区间[n,m]上恒有f(x)∈[$\frac{n}{k}$,km]成立,则称区间[n,m]为函数f(x)的“k度约束区间”,若区间[$\frac{1}{t}$,t](t>0)为函数f(x)=x2-tx+t2的“2度约束区间”,则实数t的取值范围是(  )
A.(1,2]B.$(1,\root{3}{{\frac{3}{2}}}]$C.$({1,\sqrt{2}}]$D.$(\sqrt{2},2]$

分析 由x∈[$\frac{1}{t}$,t],(t>0),得:t>$\frac{1}{t}$,由f(t)=t2-t•t+t2=t2≤2t得:t≤2,结合二次函数的性质求出t的范围即可.

解答 解:由题意得:$\frac{1}{2t}$≤x2-tx+t2≤2t对任意的x∈[$\frac{1}{t}$,t],(t>0)都成立,
由t>$\frac{1}{t}$得:t>1,
f($\frac{1}{t}$)=$\frac{1}{{t}^{2}}$-1+t2>2-1=1>$\frac{1}{2t}$,
由f(t)=t2-t•t+t2=t2≤2t得:t≤2,
∵t>1,
∴f($\frac{1}{t}$)=$\frac{1}{{t}^{2}}$-1+t2<1-1+t2=t2
又f(x)=x2-tx+t2的对称轴是x=$\frac{t}{2}$,
由f($\frac{t}{2}$)=$\frac{{3t}^{2}}{4}$≥$\frac{1}{2t}$,得:t≥$\root{3}{\frac{2}{3}}$,
由于$\root{3}{\frac{2}{3}}$<1,
∴t的范围是(1,2],
故选:A.

点评 本题考查新定义问题,考查学生的创新能力,解决问题的能力,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)=$\frac{2}{3}$lnx-$\frac{1}{3}$x2+$\frac{1}{2}$,则函数f(x)的最大值为$\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在直角坐标系xOy中,以原点O为极点,以x轴非负半轴为极轴,与直角坐标系xOy取相同的长度单位,建立极坐标系,设曲线C1的极坐标方程为ρ=2cosθ,曲线C2的参数方程为$\left\{\begin{array}{l}{x=-\frac{4}{5}t}\\{y=-2+\frac{3}{5}t}\end{array}\right.$(t为参数)
(1)判断曲线C1与C2的位置关系;
(2)设M(x,y)为曲线C1上任意一点,求x+y的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设U=R,A={x|x<1} 则∁UA={x|x≥1}?.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数$f(x)=\left\{\begin{array}{l}{\sqrt{2}^x},x∈[0,2]\\ \frac{4}{x},x∈(2,4].\end{array}\right.$
(1)画出函数f(x)的大致图象;
(2)写出函数f(x)的最大值和单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}的前n项和为Sn,且满足${S_n}+n=2{a_n}(n∈{N^*})$.
(1)证明:数列{an+1}为等比数列,并求数列{an}的通项公式;
(2)数列{bn}满足${b_n}={a_n}•{log_2}({a_n}+1)(n∈{N^*})$,其前n项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.办公室刚装修一新,放些植物花草可以清除异味,公司提供绿萝、文竹、碧玉、芦荟4种植物供员工选择,每个员工只能任意选择1种,则员工甲和乙选择不同的概率为$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=ln(x+a)-x2-x在x=0处取得极值.求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列四个函数中,既是$(0,\frac{π}{2})$上的增函数,又是以π为周期的偶函数的是(  )
A.y=sinxB.y=cosxC.y=|sinx|D.y=|cosx|

查看答案和解析>>

同步练习册答案