精英家教网 > 高中数学 > 题目详情
已知数列{an}的首项a1=5且Sn-1=an(n≥2,n∈N*
(1)求a1,a3,a4的值,并猜想an(n≥2,n∈N*)的表达式;
(2)用数学归纳法证明你的猜想.
分析:(1)由题意可得 an+1=
2an
an+1
,又a1=2,可求得a2,再由a2的值求 a3,再由a3 的值求出a4的值.
(2)猜想 an=
2n
2n-1
,检验n=1时等式成立,假设n=k时命题成立,证明当n=k+1时命题也成立.
解答:解:(1)由题意:Sn-1=an(n≥2,n∈N*),
得 a2=S1=a1=5;a3=S2=a1+a2=10;a4=S3=a1+a2+a3=20;
猜想:an=5×2n-2(n≥2,n∈N);
证明:(2)①当n=2时,由(1)知,命题成立.
②假设当n=k时命题成立,即 ak=5×2k-2
则当n=k+1时,a k+1=Sk=a1+a2+…+ak=5+
5(1-2 k-1)
1-2
=5-5•2k-1=5•2k-1
故命题也成立.                     
综上,对一切n≥2,n∈N都有an=5×2n-2成立.
点评:本题考查数列的递推公式,用数学归纳法证明等式成立.证明当n=k+1时命题也成立,是解题的难点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}的首项a1=
1
2
,前n项和Sn=n2an(n≥1).
(1)求数列{an}的通项公式;
(2)设b1=0,bn=
Sn-1
Sn
(n≥2)
,Tn为数列{bn}的前n项和,求证:Tn
n2
n+1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的首项为a1=2,前n项和为Sn,且对任意的n∈N*,当n≥2,时,an总是3Sn-4与2-
52
Sn-1
的等差中项.
(1)求数列{an}的通项公式;
(2)设bn=(n+1)an,Tn是数列{bn}的前n项和,n∈N*,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•江门一模)已知数列{an}的首项a1=1,若?n∈N*,an•an+1=-2,则an=
1,n是正奇数
-2,n是正偶数
1,n是正奇数
-2,n是正偶数

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的首项为a1=3,通项an与前n项和sn之间满足2an=Sn•Sn-1(n≥2).
(1)求证:数列{
1Sn
}
是等差数列;
(2)求数列{an}的通项公式;
(3)求数列{an}中的最大项.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的首项a1=
2
3
an+1=
2an
an+1
,n∈N+
(Ⅰ)设bn=
1
an
-1
证明:数列{bn}是等比数列;
(Ⅱ)数列{
n
bn
}的前n项和Sn

查看答案和解析>>

同步练习册答案