精英家教网 > 高中数学 > 题目详情

已知是斜率为k的直线上的两点.求证:==

答案:略
解析:

证明:

=

=

=

=


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•惠州模拟)已知点P是圆F1:(x+1)2+y2=8上任意一点,点F2与点F1关于原点对称.线段PF2的中垂线m分别与PF1、PF2交于M、N两点.
(1)求点M的轨迹C的方程;
(2)斜率为k的直线l与曲线C交于P,Q两点,若
OP
OQ
=0
(O为坐标原点),试求直线l在y轴上截距的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•香洲区模拟)已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的右顶点A为抛物线y2=8x的焦点,上顶点为B,离心率为
3
2

(1)求椭圆C的方程;
(2)过点(0,
2
)
且斜率为k的直线l与椭圆C相交于P,Q两点,若线段PQ的中点横坐标是-
4
2
5
,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•聊城一模)已知点F1,F2分别为椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左右焦点,P是椭圆C上的一点,且|F1F2|=2,∠F1PF2=
π
3
,△F1PF2
的面积为
3
3

(Ⅰ)求椭圆C的方程;
(Ⅱ)点M的坐标为(
5
4
,0)
,过点F2且斜率为k的直线l与椭圆C相交于A,B两点,对于任意的k∈R,
MA
MB
是否为定值?若是求出这个定值;若不是说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:x2=ay(a>0),斜率为k的直线l经过抛物线的焦点F,交抛物线于A,B两点,且抛物线上一点M(2
2
 , m) (m>1)
到点F的距离是3.
(Ⅰ)求a的值;
(Ⅱ)若k>0,且
AF
=3
FB
,求k的值.
(Ⅲ)过A,B两点分别作抛物线的切线,这两条切线的交点为点Q,求证:
AB
 • 
FQ
=0

查看答案和解析>>

同步练习册答案