精英家教网 > 高中数学 > 题目详情
在△ABC中,三边a,b,c满足:a2﹣a﹣2b﹣2c=0,a+2b﹣2c+3=0.
(1)探求△ABC的最长边;
(2)求△ABC的最大角.
解:(1)∵

由①
∴a>3,

所以最大边长为c.
(2)由已知,等式两边对应相乘得(a+2b)2﹣4c2=﹣3a2
∴a2+b2﹣c2+ab=0,
由余弦定理可知cosC=﹣
∴∠C=120°
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,三边a、b、c与面积S的关系是S=
1
4
(a2+b2-c2),则角C应为(  )
A、30°B、45°
C、60°D、90°

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,三边a、b、c所对的角分别为A、B、C,已知a=2
3
,b=2,△ABC的面积S=
3
,则C=
π
6
6
π
6
6

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,三边a,c,b成等差,则sinA的范围是
[
3
2
,1
[
3
2
,1

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,三边a、b、c与面积S的关系式为S=
1
4
(a2+b2-c2),则角C=
π
4
π
4

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,三边a,b,c成等差数列,B=30°,三角形ABC的面积为
1
2
,则b的值是(  )

查看答案和解析>>

同步练习册答案