精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
1
x
-log2
1+x
1-x

(1)求f(x)的定义域;
(2)判断并证明f(x)的奇偶性.
分析:(1)根据分式函数的分母不为0,对数的真数大于0建立不等式组,解之即可求出函数的定义域;
(2)先看其定义域是否关于原点对称,然后根据函数奇偶性的定义进行判定即可.
解答:解:(1)∵f(x)=
1
x
-log2
1+x
1-x

x≠0
1+x
1-x
>0
解得-1<x<0或0<x<1
∴f(x)的定义域为(-1,0)∪(0,1)
(2)定义域关于原点对称
且f(-x)=-
1
x
-log2
1-x
1+x
=-
1
x
+log2
1+x
1-x
=-f(x)
∴f(x)是奇函数
点评:本题主要考查了分式函数和对数函数的定义域,以及函数的奇偶性的判定,同时考查了运算求解的能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1
|x|
,g(x)=1+
x+|x|
2
,若f(x)>g(x),则实数x的取值范围是(  )
A、(-∞,-1)∪(0,1)
B、(-∞,-1)∪(0,
-1+
5
2
)
C、(-1,0)∪(
-1+
5
2
,+∞)
D、(-1,0)∪(0,
-1+
5
2
)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1,x∈Q
0,x∉Q
,则f[f(π)]=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1-x
ax
+lnx(a>0)

(1)若函数f(x)在[1,+∞)上为增函数,求实数a的取值范围;
(2)当a=1时,求f(x)在[
1
2
,2
]上的最大值和最小值;
(3)当a=1时,求证对任意大于1的正整数n,lnn>
1
2
+
1
3
+
1
4
+
+
1
n
恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=1+cos2x-2sin2(x-
π
6
),其中x∈R,则下列结论中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=1+logax(a>0,a≠1),满足f(9)=3,则f-1(log92)的值是(  )

查看答案和解析>>

同步练习册答案