精英家教网 > 高中数学 > 题目详情
精英家教网如图,已知椭圆
x2
a2
+
y2
b2
=1(a>b>0),F1、F2分别为椭
圆的左、右焦点,A为椭圆的上顶点,直线AF2交椭圆于另一
点B、
(1)若∠F1AB=90°,求椭圆的离心率;
(2)若
AF2
=2
F2B
AF1
AB
=
3
2
,求椭圆的方程.
分析:(1)根据∠F1AB=90°推断出△AOF2为等腰直角三角形,进而可知OA=OF2,求得b和c的关系,进而可求得a和c的关系,即椭圆的离心率.
(2)根据题意可推断出A,和两个焦点的坐标,设出B的坐标,利用已知条件中向量的关系,求得x和y关于c的表达式,代入椭圆方程求得a和c的关系,利用
AF1
AB
=
3
2
求得a和c的关系,最后联立求得a和b,则椭圆方程可得.
解答:解:(1)若∠F1AB=90°,则△AOF2为等腰直角三角形,所以有OA=OF2,即b=C、
所以a=
2
c,e=
c
a
=
2
2

(2)由题知A(0,b),F1(-c,0),F2(c,0),
其中,c=
a2-b2
,设B(x,y).
AF2
=2
F2B
?(c,-b)=2(x-c,y),解得x=
3c
2

y=-
b
2
,即B(
3c
2
,-
b
2
).
将B点坐标代入
x2
a2
+
y2
b2
=1,得
9
4
c2
a2
+
b2
4
b2
=1,
9c2
4a2
+
1
4
=1,
解得a2=3c2.①
又由
AF1
AB
=(-c,-b)•(
3c
2
,-
3b
2
)=
3
2

⇒b2-c2=1,
即有a2-2c2=1.②
由①,②解得c2=1,a2=3,从而有b2=2.
所以椭圆方程为
x2
3
+
y2
2
=1.
点评:本题主要考查了椭圆的应用和椭圆的简单性质,向量的基本性质.注意挖掘题意中隐含的条件,充分利用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
过点C(
3
2
3
2
)
且离心率为
6
3
,A、B是长轴的左右两顶点,P为椭圆上意一点(除A,B外),PD⊥x轴于D,若
PQ
QD
,λ∈(-1,0)

(1)试求椭圆的标准方程;
(2)P在C处时,若∠QAB=2∠PAB,试求过Q、A、D三点的圆的方程;
(3)若直线QB与AP交于点H,问是否存在λ,使得线段OH的长为定值,若存在,求出λ的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•汕头一模)如图.已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的长轴为AB,过点B的直线l与x轴垂直,椭圆的离心率e=
3
2
,F1为椭圆的左焦点且
AF1
F1B
=1.
(I)求椭圆的标准方程;
(II)设P是椭圆上异于A、B的任意一点,PH⊥x轴,H为垂足,延长HP到点Q使得HP=PQ.连接AQ并延长交直线l于点M,N为MB的中点,判定直线QN与以AB为直径的圆O的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)如图,已知椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的离心率为
3
2
,F1,F2分别是椭圆的左、右焦点,B为椭圆的上顶点且△BF1F2的周长为4+2
3

(1)求椭圆的方程;
(2)是否存在这样的直线使得直线l与椭圆交于M,N两点,且椭圆右焦点F2恰为△BMN的垂心?若存在,求出直线l的方程;若不存在,请说明由..

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•崇明县二模)如图,已知椭圆
x2
a2
+
y2
b2
=1
(a>b>0),M为椭圆上的一个动点,F1、F2分别为椭圆的左、右焦点,A、B分别为椭圆的一个长轴端点与短轴的端点.当MF2⊥F1F2时,原点O到直线MF1的距离为
1
3
|OF1|.
(1)求a,b满足的关系式;
(2)当点M在椭圆上变化时,求证:∠F1MF2的最大值为
π
2

(3)设圆x2+y2=r2(0<r<b),G是圆上任意一点,过G作圆的切线交椭圆于Q1,Q2两点,当OQ1⊥OQ2时,求r的值.(用b表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
过点(1,
2
2
)
,离心率为
2
2
,左、右焦点分别为F1、F2.点P为直线l:x+y=2上且不在x轴上的任意一点,直线PF1和PF2与椭圆的交点分别为A、B和C、D,O为坐标原点.设直线PF1、PF2的斜率分别为k1、k2
(Ⅰ)证明:
1
k1
-
3
k2
=2

(Ⅱ)问直线l上是否存在点P,使得直线OA、OB、OC、OD的斜率kOA、kOB、kOC、kOD满足kOA+kOB+kOC+kOD=0?若存在,求出所有满足条件的点P的坐标;若不存在,说明理由.

查看答案和解析>>

同步练习册答案