精英家教网 > 高中数学 > 题目详情
对于椭圆=1.(ab>0)它的左、右焦点分别是F1(-c,0)和F2(c,0),P(x0,y0)是椭圆上的任一点,求证:|PF1|=a+ex0,|PF2|=a-ex0,其中e是椭圆的离心率.

证明:椭圆=1(ab>0)的两焦点

F1(-c,0)、F2(c,0),相应的准线方程分别是

x=2和x=.

∵椭圆上任一点到焦点的距离与它到相应准线的距离的比等于这个椭圆的离心率.

化简得:|PF1|=a+ex0,|PF2|=a-ex0.

温馨提示

|PF1|、|PF2|都是椭圆上的点到焦点的距离,习惯称作焦点半径.|PF1|=a+ex0,|PF2|=a-ex0称作焦半径公式,结合这两个公式,显然到焦点距离最远(近)点为长轴端点.

练习册系列答案
相关习题

科目:高中数学 来源:2010-2011学年江苏省南通市海门中学高二(下)期中数学试卷(理科)(解析版) 题型:填空题

若AB是过二次曲线中心的任一条弦,M是二次曲线上异于A、B的任一点,且AM、BM均与坐标轴不平行,则对于椭圆=1有KAM•KBM=-.类似地,对于双曲线-=1有KAM•KBM=   

查看答案和解析>>

科目:高中数学 来源:2011年福建省泉州市石狮市石光华侨联合中学高考数学冲刺模拟试卷3(理科)(解析版) 题型:解答题

若AB是过二次曲线中心的任一条弦,M是二次曲线上异于A、B的任一点,且AM、BM均与坐标轴不平行,则对于椭圆=1有KAM•KBM=-.类似地,对于双曲线-=1有KAM•KBM=   

查看答案和解析>>

科目:高中数学 来源:2009-2010学年江西省重点中学协作体高三第二次联考数学试卷(理科)(解析版) 题型:解答题

若AB是过二次曲线中心的任一条弦,M是二次曲线上异于A、B的任一点,且AM、BM均与坐标轴不平行,则对于椭圆=1有KAM•KBM=-.类似地,对于双曲线-=1有KAM•KBM=   

查看答案和解析>>

科目:高中数学 来源:2010年高考数学新题型解析选编(4)(解析版) 题型:解答题

若AB是过二次曲线中心的任一条弦,M是二次曲线上异于A、B的任一点,且AM、BM均与坐标轴不平行,则对于椭圆=1有KAM•KBM=-.类似地,对于双曲线-=1有KAM•KBM=   

查看答案和解析>>

同步练习册答案