精英家教网 > 高中数学 > 题目详情

设ξ为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,ξ=0;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时ξ=1.

(1)求概率p(ξ=0)

(2)求ξ的分布列,并求其数学期望E(ξ).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•江苏)设ξ为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,ξ=0;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时,ξ=1.
(1)求概率P(ξ=0);
(2)求ξ的分布列,并求其数学期望E(ξ).

查看答案和解析>>

科目:高中数学 来源:2013-2014学年江苏苏州市高三调研测试理科数学试卷(解析版) 题型:解答题

为随机变量,从棱长为1的正方体ABCD?A1B1C1D1的八个顶点中任取四个点,当四点共面时,=0,当四点不共面时,的值为四点组成的四面体的体积.

1)求概率P=0);

2)求的分布列,并求其数学期望E ()

 

查看答案和解析>>

科目:高中数学 来源:2012年全国普通高等学校招生统一考试数学(江苏卷解析版) 题型:解答题

为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,;当两条棱平行时,的值为两条棱之间的距离;当两条棱异面时,

  (1)求概率

  (2)求的分布列,并求其数学期望

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年湖北省武汉六中高三(上)12月月考数学试卷(理科)(解析版) 题型:解答题

设ξ为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,ξ=0;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时,ξ=1.
(1)求概率P(ξ=0);
(2)求ξ的分布列,并求其数学期望E(ξ).

查看答案和解析>>

科目:高中数学 来源:2012年江苏省高考数学试卷(解析版) 题型:解答题

设ξ为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,ξ=0;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时,ξ=1.
(1)求概率P(ξ=0);
(2)求ξ的分布列,并求其数学期望E(ξ).

查看答案和解析>>

同步练习册答案