精英家教网 > 高中数学 > 题目详情

如图直三棱柱ABC-A1B1C1的侧棱长为2,底面△ABC是等腰直角三角形,∠ABC=90°,AC=2,D是AA1的中点

(1)求异面直线AB与C1D所成的角的大小;

(2)求直线C1D与平面ABB1A1所成的角;

答案:
解析:

  解:(1)解法1:取的中点F,连接

  就是所成的角 3分

  在 5分

  所以异面直线所成的角为arccos 7分

  解法2

  如图建立空间直角坐标系

  则A(,0,0),B(0,0,0),

  C1(0,,2),D(,0,1) 2分

  设的夹角为 3分

  则=- 6分

  ∴异面直线所成的角为arccos 7分

  (2)取的中点,连接

  就是与平面所成的角 9分

   13分

  所以直线与平面所成的角为() 14分

 


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图直三棱柱ABC-A1B1C1的体积为V,点P、Q分别在侧棱AA1和CC1上,AP=C1Q,则四棱锥B-APQC的体积为(  )
A、
V
2
B、
V
3
C、
V
4
D、
V
5

查看答案和解析>>

科目:高中数学 来源: 题型:

16、如图直三棱柱ABC-DEF中,∠CAB是直角,AB=AC=CF,则异面直线DB与AF所成角的度数为
60°

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•徐汇区二模)如图直三棱柱ABC-A1B1C1的侧棱长为2,底面△ABC是等腰直角三角形,∠ABC=90°,AC=2,D是AA1的中点
(1)求三棱柱ABC-A1B1C1的体积V;
(2)求C1D与上底面所成角的大小.(用反三角表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•咸阳三模)如图直三棱柱ABC-A1B1C1中,AC=CC1=2,AB=BC,D是BA1上一点,且AD⊥平面A1BC.
(1)求证:BC⊥平面ABB1A1
(2)求三棱锥A-BCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•咸阳三模)如图直三棱柱ABC-A1B1C1中,AC=CC1=2,AB=BC,D是BA1上一点,且AD⊥平面A1BC.
(1)求证:BC⊥平面ABB1A1
(2)在棱BB1是否存在一点E,使平面AEC与平面ABB1A1的夹角等于60°,若存在,试确定E点的位置,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案