精英家教网 > 高中数学 > 题目详情
选修4-5 不等式证明选讲
设a,b,c均为正数,证明:
【答案】分析:将左边加上a+b+c,再使用基本不等式,从而可证
解答:证明: 3分
≥2a+2b+2c 9分
即得.10分
点评:本题以不等式为载体,考查基本不等式的运用,关键是根据题目特征,创造符合基本不等式的条件.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(选修4-5  不等式证明选讲)
若不等式|x+1|+|
12
x-1|<a
的解集非空,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题记分.
(1)选修4-2:矩阵与变换
已知点A(1,0),B(2,2),C(3,0),矩阵M表示变换”顺时针旋转45°”.
(Ⅰ)写出矩阵M及其逆矩阵M-1
(Ⅱ)请写出△ABC在矩阵M-1对应的变换作用下所得△A1B1C1的面积.
(2)选修4-4:坐标系与参数方程
过P(2,0)作倾斜角为α的直线l与曲线E:
x=cosθ
y=
2
2
sinθ
(θ为参数)交于A,B两点.
(Ⅰ)求曲线E的普通方程及l的参数方程;
(Ⅱ)求sinα的取值范围.
(3)(选修4-5 不等式证明选讲)
已知正实数a、b、c满足条件a+b+c=3,
(Ⅰ)求证:
a
+
b
+
c
≤3

(Ⅱ)若c=ab,求c的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

选考题部分
(1)(选修4-4 参数方程与极坐标)(本小题满分7分)
在极坐标系中,过曲线L:ρsin2θ=2acosθ(a>0)外的一点A(2
5
,π+θ)
(其中tanθ=2,θ为锐角)作平行于θ=
π
4
(ρ∈R)
的直线l与曲线分别交于B,C.
(Ⅰ) 写出曲线L和直线l的普通方程(以极点为原点,极轴为x轴的正半轴建系);
(Ⅱ)若|AB|,|BC|,|AC|成等比数列,求a的值.
(2)(选修4-5 不等式证明选讲)(本小题满分7分)
已知正实数a、b、c满足条件a+b+c=3,
(Ⅰ) 求证:
a
+
b
+
c
≤3

(Ⅱ)若c=ab,求c的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•南京模拟)A.选修4-1几何证明选讲
如图,△ABC的外接圆的切线AE与BC的延长线相交于点E,∠BAC的平分线与BC交于点D.
求证:ED2=EB•EC.
B.矩阵与变换
已知矩阵A=
2-1
-43
4-1
-31
,求满足AX=B的二阶矩阵X.
C.选修4-4 参数方程与极坐标
若两条曲线的极坐标方程分别为ρ=1与ρ=2cos(θ+
π
3
),它们相交于A,B两点,求线段AB的长.
D.选修4-5 不等式证明选讲设a,b,c为正实数,求证:a3+b3+c3+
1
abc
≥2
3

查看答案和解析>>

科目:高中数学 来源:2010-2011学年福建省莆田市高三毕业班适应性练习理科数学 题型:解答题

.本题有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题记分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.

(1)(选修4—2 矩阵与变换)(本小题满分7分)

已知矩阵 ,向量

(Ⅰ) 求矩阵的特征值和特征向量

(Ⅱ)求的值.

(2)(选修4—4 参数方程与极坐标)(本小题满分7分)

在极坐标系中,过曲线外的一点(其中为锐角)作平行于的直线与曲线分别交于

(Ⅰ) 写出曲线和直线的普通方程(以极点为原点,极轴为轴的正半轴建系); 

(Ⅱ)若成等比数列,求的值.

(3)(选修4—5 不等式证明选讲)(本小题满分7分)

已知正实数满足条件

(Ⅰ) 求证:

(Ⅱ)若,求的最大值.


 

查看答案和解析>>

同步练习册答案