精英家教网 > 高中数学 > 题目详情
已知数列{an}(n∈N*)的前n项和为Sn,数列{
Sn
n
}
是首项为0,公差为
1
2
的等差数列.
(1)求数列{an}的通项公式;
(2)设bn=
4
15
•(-2)an(n∈N*)
,对任意的正整数k,将集合{b2k-1,b2k,b2k+1}中的三个元素排成一个递增的等差数列,其公差为dk,求证:数列{dk}为等比数列;
(3)对(2)题中的dk,求集合{x|dk<x<dk+1,x∈Z}的元素个数.
(1)由条件得
Sn
n
=0+(n-1)
1
2
,即Sn=
n
2
(n-1)

an=n-1(n∈N*)
(2)由(1)可知bn=
4
15
•(-2)n-1(n∈N*)

b2k-1=
4
15
(-2)2k-2=
4
15
22k-2
b2k=
4
15
(-2)2k-1=-
4
15
22k-1
b2k+1=
4
15
(-2)2k=
4
15
22k

由2b2k-1=b2k+b2k+1及b2k<b2k-1<b2k+1得b2k,b2k-1,b2k+1依次成递增的等差数列,
所以dk=b2k+1-b2k-1=
4
15
22k-
4
15
22k-2=
4k
5

满足
dk+1
dk
=4
为常数,所以数列{dk}为等比数列.
(3)①当k为奇数时,
dk=
4k
5
=
(5-1)k
5
=
5k-
C1k
5k-1+
C2k
5k-2-…+(-1)k
5
=5k-1-
C1k
5k-2+
C2k
5k-3-…+
Ck-1k
50(-1)k-1-
1
5

同样,可得dk+1=
4k+1
5
=
(5-1)k+1
5
=5k-
C1k+1
5k-1+
C2k+1
5k-2-…+
Ckk+1
50(-1)k+
1
5

所以,集合{x|dk<x<dk+1,x∈Z}的元素个数为(dk+1-
1
5
)-(dk+
1
5
)+1
=dk+1-dk+
3
5
=
3(4k+1)
5

②当k为偶数时,同理可得集合{x|dk<x<dk+1,x∈Z}的元素个数为
3•(4k-1)
5
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an-n}是等比数列,且满足a1=2,an+1=3an-2n+1,n∈N*.
(Ⅰ)求数列{an}的通项公式an
(Ⅱ)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•韶关模拟)已知数列{an} (n∈N*)满足:a1=1,an+1-sin2θ•an=cos2θ•cos2nθ,其中θ∈(0,
π
2
)

(1)当θ=
π
4
时,求{an}的通项公式;
(2)在(1)的条件下,若数列{bn}中,bn=sin
πan
2
+cos
πan-1
4
(n∈N*,n≥2)
,且b1=1.求证:对于?n∈N*,1≤bn
2
恒成立;
(3)对于θ∈(0,
π
2
)
,设{an}的前n项和为Sn,试比较Sn+2与
4
sin2
的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}(n∈N*)是等比数列,且an>0,a1=2,a3=8,
(1)求数列{an}的通项公式;
(2)求证:
1
a1
+
1
a2
+
1
a3
+…+
1
an
<1

(3)设bn=2log2an+1,求数列{bn}的前100项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•松江区二模)已知数列{an}(n∈N*)的前n项和为Sn,数列{
Sn
n
}
是首项为0,公差为
1
2
的等差数列.
(1)求数列{an}的通项公式;
(2)设bn=
4
15
•(-2)an(n∈N*)
,对任意的正整数k,将集合{b2k-1,b2k,b2k+1}中的三个元素排成一个递增的等差数列,其公差为dk,求dk
(3)对(2)题中的dk,设A(1,5d1),B(2,5d2),动点M,N满足
MN
=
AB
,点N的轨迹是函数y=g(x)的图象,其中g(x)是以3为周期的周期函数,且当x∈(0,3]时,g(x)=lgx,动点M的轨迹是函数f(x)的图象,求f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•松江区二模)已知数列{an}(n∈N*)的前n项和为Sn,数列{
Sn
n
}
是首项为0,公差为
1
2
的等差数列.
(1)求数列{an}的通项公式;
(2)设bn=
4
15
•(-2)an(n∈N*)
,对任意的正整数k,将集合{b2k-1,b2k,b2k+1}中的三个元素排成一个递增的等差数列,其公差为dk,求证:数列{dk}为等比数列;
(3)对(2)题中的dk,求集合{x|dk<x<dk+1,x∈Z}的元素个数.

查看答案和解析>>

同步练习册答案