精英家教网 > 高中数学 > 题目详情
函数y=
ax-1
的定义域是(-∞,0],则a的取值范围是
 
分析:由函数y=
ax-1
的定义域是(-∞,0],则函数在(-∞,0]上一定有意义,即ax-1≥0,x∈(-∞,0]恒成立.
解答:解:∵ax-1≥0,x∈(-∞,0]恒成立
∴0<a<1
故答案是0<a<1
点评:本题主要考查函数定义域的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=x+
a
x
的定义域为(0,+∞),且f(2)=2+
2
2
.设点P是函数图象上的任意一点,过点P分别作直线y=x和y轴的垂线,垂足分别为M、N.
(1)求a的值.
(2)问:|PM|•|PN|是否为定值?若是,则求出该定值;若不是,请说明理由.
(3)设O为坐标原点,求四边形OMPN面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

关于函数y=f(x),有下列命题:
①若a∈[-2,2],则函数f(x)=
x2+ax+1
的定域为R;
②若f(x)=log
1
2
(x2-3x+2)
,则f(x)的单调增区间为(-∞,
3
2
)

③(理)若f(x)=
1
x2-x-2
,则
lim
x→2
[(x-2)f(x)]=0

(文)若f(x)=
1
x2-x-2
,则值域是(-∞,0)∪(0,+∞)
④定义在R的函数f(x),且对任意的x∈R都有:f(-x)=-f(x),f(1+x)=f(1-x),则4是y=f(x)的一个周期.
其中真命题的编号是
 
.(文理相同)

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

设函数f(x)=ax+(a,b∈Z),曲线y=f(x)在点(2,f(2))处的切线方程为y=3。

(Ⅰ)求f(x)的解析式:

(Ⅱ)证明:函数y=f(x)的图像是一个中心对称图形,并求其对称中心;

(Ⅲ)证明:曲线y=f(x)上任一点的切线与直线x=1和直线y=x所围三角形的面积为定值,并求出此定值。

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

设函数f(x)=ax+(a,b∈Z),曲线y=f(x)在点(2,f(2))处的切线方程为y=3。

(Ⅰ)求f(x)的解析式:

(Ⅱ)证明:函数y=f(x)的图像是一个中心对称图形,并求其对称中心;

(Ⅲ)证明:曲线y=f(x)上任一点的切线与直线x=1和直线y=x所围三角形的面积为定值,并求出此定值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

关于函数y=f(x),有下列命题:
①若a∈[-2,2],则函数f(x)=
x2+ax+1
的定域为R;
②若f(x)=log
1
2
(x2-3x+2)
,则f(x)的单调增区间为(-∞,
3
2
)

③(理)若f(x)=
1
x2-x-2
,则
lim
x→2
[(x-2)f(x)]=0

(文)若f(x)=
1
x2-x-2
,则值域是(-∞,0)∪(0,+∞)
④定义在R的函数f(x),且对任意的x∈R都有:f(-x)=-f(x),f(1+x)=f(1-x),则4是y=f(x)的一个周期.
其中真命题的编号是______.(文理相同)

查看答案和解析>>

同步练习册答案