精英家教网 > 高中数学 > 题目详情

已知椭圆C:=1(a>b>0)的离心率为,点M(2,3),N(2,-3)为C上两点,斜率为的直线与椭圆C交于点A,B(A,B在直线MN两侧).

(Ⅰ)求四边形MANB面积的最大值;

(Ⅱ)设直线AM,BM的斜率为k1,k2,试判断k1+k2是否为定值.若是,求出这个定值;若不是,说明理由.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(08年泉州一中适应性练习文)(12分)已知椭圆C=1(a>b>0)的离心率为,过右焦点F且斜率为1的直线交椭圆CA,B两点,N为弦AB的中点。

(1)求直线ONO为坐标原点)的斜率KON

(2)对于椭圆C上任意一点M ,试证:总存在角∈R)使等式:cossin成立。

 

查看答案和解析>>

科目:高中数学 来源: 题型:

(09年湖北重点中学4月月考理)(13分

已知椭圆C=1(a>b>0)的离心率为,过右焦点F且斜率为1的直线交椭圆CA,B两点,N为弦AB

(1)求直线ONO为坐标原点)的斜率KON

1)           (2)对于椭圆C上任意一点M ,试证:总存在角∈R)使等式:cossin成立

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C=1(a>b>0)的离心率为,过右焦点F且斜率为1的直线交椭圆CAB两点,N为弦AB的中点。

(1)求直线ONO为坐标原点)的斜率KON

(2)对于椭圆C上任意一点M ,试证:总存在角∈R)使等式:cossin成立。w.w.w.k.s.5.u.c.o.m

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C=1(a>b>0)的离心率为,过右焦点F且斜率为1的直线交椭圆CAB两点,N为弦AB的中点。

(1)求直线ONO为坐标原点)的斜率KON

(2)对于椭圆C上任意一点M ,试证:总存在角∈R)使等式:cossin成立。

查看答案和解析>>

科目:高中数学 来源:2014届湖北省武汉市高三9月调研测试理科数学试卷(解析版) 题型:解答题

已知椭圆C:=1(a>b>0)的离心率为,过右焦点F的直线l与C相交于A、B两点,当l的斜率为1时,坐标原点O到l的距离为

(Ⅰ)求a,b的值;

(Ⅱ)C上是否存在点P,使得当l绕F转到某一位置时,有成立?若存在,求出所有的P的坐标与l的方程;若不存在,说明理由.

 

查看答案和解析>>

同步练习册答案