精英家教网 > 高中数学 > 题目详情
试判断函数f(x)=lg(x-3):

(1)在区间(3,5)上有没有零点?

(2)在区间(5,+∞)上有没有零点?

解析:(1)令f(x)=lg(x-3)=0,则x-3=1,即得零点x=4.

    ∵4∈(3,5),∴f(x)在(3,5)上有零点.

    (2)∵f(x)=lg(x-3)的定义域是(3,+∞),值域是R,又f(x)在定义域上是增函数,∴f(x)在其定义域上只能有一个零点.由(1)知,其唯一的零点是x=4.∴f(x)在(5,+∞)上没有零点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义在D上的函数,如果满足:存在常数M>0,对任意x∈D都有|f(x)|≤M成立,则称f(x)是D上的有界函数.
(1)试判断函数f(x)=2sin(x+
π
6
)+3
在实数集R上,函数g(x)=x3+
3
x
[
1
3
,3]
上是不是有界函数?若是,请给出证明;若不是,请说出理由.
(2)若已知某质点的运动距离S与时间t的关系为S(t)=
1
4
t4+3lnt-at
,要使在t∈[
1
3
,3]
上每一时刻的瞬时速度的绝对值都不大于13,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如右图所示,定义在D上的函数f(x),如果满足:对?x∈D,常数A,都有f(x)≥A成立,则称函数f(x)在D上有下界,其中A称为函数的下界.(提示:图中的常数A可以是正数,也可以是负数或零)
(1)试判断函数f(x)=x3+
48
x
在(0,+∞)上是否有下界?并说明理由;
(2)已知某质点的运动方程为S(t)=at-2
t+1
,要使在t∈[0,+∞)上的每一时刻该质点的瞬时速度是以A=
1
2
为下界的函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数,其中m∈R.

(1)若0<m≤2,试判断函数f (x)=f1 (x)+f2 (x)的单调性,并证明你的结论;

(2)设函数 若对任意大于等于2的实数x1,总存在唯一的小于2的实数x2,使得g (x1) = g (x2) 成立,试确定实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)=log2,F(x)=+f(x). 

(1)试判断函数f(x)的单调性,并用函数单调性定义,给出证明;

(2)若f(x)的反函数为f1(x),证明: 对任意的自然数n(n≥3),都有f1(n)>;

(3)若F(x)的反函数F-1(x),证明: 方程F-1(x)=0有惟一解.

查看答案和解析>>

同步练习册答案