精英家教网 > 高中数学 > 题目详情
求以圆C1:x2+y2-12x-2y-13=0和圆C2:x2+y2+12x+16y-25=0的公共弦为直径的圆的方程.
分析:先确定公共弦的方程,再求出公共弦为直径的圆的圆心坐标、半径,即可得到公共弦为直径的圆的圆的方程.
解答:解:∵圆C1:x2+y2-12x-2y-13=0和圆C2:x2+y2+12x+16y-25=0,
∴两圆相减可得公共弦方程为l:4x+3y-2=0
又∵圆C1:x2+y2-12x-2y-13=0的圆心坐标为(6,1),半径为5
2

圆C2:x2+y2+12x+16y-25=0的圆心坐标为(-6,-8),半径为5
5

∴C1C2的方程为3x-4y-14=0
∴联立
4x+3y-2=0
3x-4y-14=0
可得公共弦为直径的圆的圆心坐标为(2,-2),
∵(6,1)到公共弦的距离为5
∴公共弦为直径的圆的半径为5
∴公共弦为直径的圆的方程为(x-2)2+(y+2)2=25.
点评:本题考查圆与圆的位置关系,考查圆的方程的确定,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知直线l:2
2
x-y+3+8
2
=0
和圆C1:x2+y2+8x+F=0.若直线l被圆C1截得的弦长为2
3

(1)求圆C1的方程;
(2)设圆C1和x轴相交于A、B两点,点P为圆C1上不同于A、B的任意一点,直线PA、PB交y轴于M、N点.当点P变化时,以MN为直径的圆C2是否经过圆C1内一定点?请证明你的结论;
(3)若△RST的顶点R在直线x=-1上,S、T在圆C1上,且直线RS过圆心C1,∠SRT=30°,求点R的纵坐标的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知直线
l
 
1
:y=2x+m(m<0)
与抛物线C1:y=ax2(a>0)和圆C2x2+(y+1)2=5都相切,F是C1的焦点.
(1)求m与a的值;
(2)设A是C1上的一动点,以A为切点作抛物线C1的切线l,直线l交y轴于点B,以FA,FB为邻边作平行四边形FAMB,证明:点M在一条定直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知直线
l
 
1
:y=2x+m(m<0)
与抛物线C1:y=ax2(a>0)和圆C2x2+(y+1)2=5都相切,F是C1的焦点.
(1)求m与a的值;
(2)设A是C1上的一动点,以A为切点作抛物线C1的切线,直线交y轴于点B,以FA,FB为邻边作平行四边形FAMB,证明:点M在一条定直线上;
(3)在(2)的条件下,记点M所在的定直线为l2,直线l2与y轴交点为N,连接MF交抛物线C1于P,Q两点,求△NPQ的面积S的取值范围.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年浙江省台州市高一(下)期末数学试卷(解析版) 题型:解答题

在平面直角坐标系xOy中,已知直线l:2x-y+3+8和圆C1:x2+y2+8x+F=0.若直线l被圆C1截得的弦长为2
(1)求圆C1的方程;
(2)设圆C1和x轴相交于A、B两点,点P为圆C1上不同于A、B的任意一点,直线PA、PB交y轴于M、N点.当点P变化时,以MN为直径的圆C2是否经过圆C1内一定点?请证明你的结论;
(3)若△RST的顶点R在直线x=-1上,S、T在圆C1上,且直线RS过圆心C1,∠SRT=30°,求点R的纵坐标的范围.

查看答案和解析>>

科目:高中数学 来源:2011年江苏省南京市金陵中学高考数学预测试卷(1)(解析版) 题型:解答题

在平面直角坐标系xOy中,已知直线l:2x-y+3+8和圆C1:x2+y2+8x+F=0.若直线l被圆C1截得的弦长为2
(1)求圆C1的方程;
(2)设圆C1和x轴相交于A、B两点,点P为圆C1上不同于A、B的任意一点,直线PA、PB交y轴于M、N点.当点P变化时,以MN为直径的圆C2是否经过圆C1内一定点?请证明你的结论;
(3)若△RST的顶点R在直线x=-1上,S、T在圆C1上,且直线RS过圆心C1,∠SRT=30°,求点R的纵坐标的范围.

查看答案和解析>>

同步练习册答案