精英家教网 > 高中数学 > 题目详情

如果函数f(x)在[a,b]上是增函数,对于任意的x1、x2∈[a,b](x1≠x2),则下列结论中不正确的是

(  )

A.>0

B.(x1-x2)[f(x1)-f(x2)]>0

C.f(a)<f(x1)<f(x2)<f(b)

D.>0

C 由函数单调性的定义可知,若函数y=f(x)在给定的区间上是增函数,则x1-x2与f(x1)-f(x2)同号,由此可知,选项A、B、D正确;

对于C,若x1<x2时,可有x1=a或x2=b,即f(x1)=f(a)或f(x2)=f(b),故C不成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知关于x的函数f(x)=-
1
3
x
3
 
+b
x
2
 
+cx+bc
,其导函数f′(x).
(1)如果函数f(x)在x=1处有极值-
4
3
,试确定b、c的值;
(2)设当x∈(0,1)时,函数y=f(x)-c(x+b)的图象上任一点P处的切线斜率为k,若k≤1,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分14分)已知关于x的函数f(x)=bx2cxbc,其导函数为f+(x)。令g(x)=∣f+(x) ∣,记函数g(x)在区间[-1、1]上的最大值为M

(Ⅰ)如果函数f(x)在x=1处有极值-,试确定bc的值;

(Ⅱ)若∣b∣>1,证明对任意的c,都有M>2;

(Ⅲ)若MK对任意的bc恒成立,试求k的最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的函数f(x)=+bx2+cx+bc,其导函数为f+(x).令g(x)=∣f (x) ∣,记函数g(x)在区间[-1、1]上的最大值为M.

   (Ⅰ)如果函数f(x)在x=1处有极值-,试确定b、c的值:

  (Ⅱ)若∣b∣>1,证明对任意的c,都有M>2: w.w.w.k.s.5.u.c.o.m    

   (Ⅲ)若M≧K对任意的b、c恒成立,试求k的最大值。

查看答案和解析>>

科目:高中数学 来源:2011-2012学年福建省高三上学期期中考试理科数学 题型:解答题

(15分)设函数∈R,为自然对数的底数,

(1)如果为函数的极大值点,求的值;

(2)如果函数f (x)在处的切线与坐标轴围成的三角形的面积等于,求的值;

(3)在(2)的条件下,当时,求f (x)的最大值和最小值.

 

查看答案和解析>>

科目:高中数学 来源:新课标高三数学导数专项训练(河北) 题型:选择题

已知函数f(x)是定义在R上的函数,如果函数f(x)在R上的导函数f′(x)的图象如图,则有以下几个命题:

(1)f(x)的单调递减区间是(-2,0)、(2,+∞),f(x)的单调递增区间是(-∞,-2)、(0,2);

(2)f(x)只在x=-2处取得极大值;

(3)f(x)在x=-2与x=2处取得极大值;

(4)f(x)在x=0处取得极小值.

其中正确命题的个数为                                                               (  )

A.1                                               B.2

C.3                                               D.4

 

查看答案和解析>>

同步练习册答案