精英家教网 > 高中数学 > 题目详情

函数f(x)由x-ln[f(x)+1]=0确定,则导函数y=(x)图像的大致形状是

[  ]
A.

B.

C.

D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在坐标平面上有两个区域M和N,M为
y≥0
y≤x
y≤2-x
对应的平面区域,N是随t变化的区域,它由不等式t≤x≤t+l所确定,t的取值范围是0≤t≤1,设M和N的公共面积是函数f(t),则f(t)=
-t2+t+
1
2
-t2+t+
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

以下有四种说法:
(1)若f′(x0)=0,则f(x)在x=x0处取得极值;
(2)由变量x和y的数据得到其回归直线方程l: 
y
=bx+a
,则l一定经过点P(
.
x
, 
.
y
)

(3)若p∨q为真,p∧q为假,则p与q必为一真一假;
(4)函数f(x)=sin(x+
π
6
)cos(x+
π
6
)
最小正周期为π,其图象的一条对称轴为x=
π
12

以上四种说法,其中正确说法的序号为
(2)(3)(4)
(2)(3)(4)

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网由函数f(x)=xlnx-x的图象在点P(e,f(e))处的切线l与直线x=e-1,直线x=e(其中e是自然对数的底数)及曲线y=lnx所围成的曲边四边形(如图中的阴影部分)的面积S=
 

查看答案和解析>>

科目:高中数学 来源:2012高三数学一轮复习单元练习题 函数(6) 题型:044

f(x)是定义在[0,1]上的函数,若存在x*∈(0,1),使得f(x)在[0,x*]上单调递增,在[x*,1]上单调递减,则称f(x)为[0,1]上的单峰函数,x*为峰点,包含峰点的区间为含峰区间.

对任意的[0,l]上的单峰函数f(x),下面研究缩短其含峰区间长度的方法.

(1)证明:对任意的x1x2∈(0,1),x1x2,若f(x1)≥f(x2),则(0,x2)为含峰区间;若f(x1)≤f(x2),则(x*,1)为含峰区间;

(2)对给定的r(0<r<0.5=,证明:存在x1x2∈(0,1),满足x2x1≥2r,使得由(Ⅰ)所确定的含峰区间的长度不大于0.5+r;

(3)选取x1x2∈(0,1),x1x2,由(Ⅰ)可确定含峰区间为(0,x2)或(x1,1),在所得的含峰区间内选取x3,由x3x1x3x2类似地可确定一个新的含峰区间.在第一次确定的含峰区间为(0,x2)的情况下,试确定x1x2x3的值,满足两两之差的绝对值不小于0.02,且使得新的含峰区间的长度缩短到0.34.(区间长度等于区间的右端点与左端点之差)

查看答案和解析>>

科目:高中数学 来源:安徽省安庆市示范高中09-10学年高一五校协作期中考试 题型:解答题

 设fx)是定义在[0,1]上的函数,若存在x*∈(0,1),使得fx)在[0, x*]上单调递增,在[x*,1]上单调递减,则称fx)为[0,1]上的单峰函数,x*为峰点,包含峰点的区间为含峰区间.对任意的[0,l]上的单峰函数fx),下面研究缩短其含峰区间长度的方法.

   (1)证明:对任意的x1x2∈(0,1),x1x2,若fx1)≥fx2),则(0,x2)为含峰区间;若fx1)≤fx2),则(x*,1)为含峰区间; 

   (2)对给定的r(0<r<0.5=,证明:存在x1x2∈(0,1),满足x2x1≥2r,使得由

       (I)所确定的含峰区间的长度不大于0.5+r; 

   (3)选取x1x2∈(0,1),x1x2,由(I)可确定含峰区间为(0,x2)或(x1,1),在所得的含峰区间内选取x3,由x3x1x3x2类似地可确定一个新的含峰区间.在第一次确定的含峰区间为(0,x2)的情况下,试确定x1x2x3的值,满足两两之差的绝对值不小于0.02,且使得新的含峰区间的长度缩短到0.34.(区间长度等于区间的右端点与左端点之差)

 

 

 

 

 

 

 

 

查看答案和解析>>

同步练习册答案