精英家教网 > 高中数学 > 题目详情
设f(x)=(x>0)作出y=-f(x)、y=f(-x)及y=-f(-x)的图象.

解:(对称变换)函数y=-f(x)的图象与函数y=f(x)的图象关于x轴对称,因此其图象如图所示.

函数y=f(-x)的图象与函数y=f(x)的图象关于y轴对称,因此其图象如图所示.

函数y=-f(-x)的图象与函数y=f(x)的图象关于原点对称,因此其图象如图所示.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

h(x)=x+
m
x
x∈[
1
4
,5]
,其中m是不等于零的常数,
(1)(理)写出h(4x)的定义域;
(文)m=1时,直接写出h(x)的值域;
(2)(文、理)求h(x)的单调递增区间;
(3)已知函数f(x)(x∈[a,b]),定义:f1(x)=minf(t)|a≤t≤x(x∈[a,b]),f2(x)=maxf(t)|a≤t≤x(x∈[a,b]).其中,minf(x)|x∈D表示函数f(x)在D上的最小值,maxf(x)|x∈D表示函数f(x)在D上的最大值.例如:f(x)=cosx,x∈[0,π],则f1(x)=cosx,x∈[0,π],f2(x)=1,x∈[0,π].
(理)当m=1时,设M(x)=
h(x)+h(4x)
2
+
|h(x)-h(4x)|
2
,不等式t≤M1(x)-M2(x)≤n恒成立,求t,n的取值范围;
(文)当m=1时,|h1(x)-h2(x)|≤n恒成立,求n的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•韶关一模)设f(x)在区间I上有定义,若对?x1,x2∈I,都有f(
x1+x2
2
)≥
f(x1)+f(x2)
2
,则称f(x)是区间I的向上凸函数;若对?x1,x2∈I,都有f(
x1+x2
2
)≤
f(x1)+f(x2)
2
,则称f(x)是区间I的向下凸函数,有下列四个判断:
①若f(x)是区间I的向上凸函数,则-f(x)在区间I的向下凸函数;
②若f(x)和g(x)都是区间I的向上凸函数,则f(x)+g(x)是区间I的向上凸函数;
③若f(x)在区间I的向下凸函数,且f(x)≠0,则
1
f(x)
是区间I的向上凸函数;
④若f(x)是区间I的向上凸函数,?x1,x2,x3,x4∈I,则有f(
x1+x2+x3+x4
4
)≥
f(x1)+f(x2)+f(x3)+f(x4)
4

其中正确的结论个数是(  )

查看答案和解析>>

科目:高中数学 来源:黑龙江省哈尔滨市第三中学2010届高三上学期期末考试数学(理)试题 题型:022

设f(x),g(x)分别为定义在R上的奇函数和偶函数,且g(x)≠0,当x<0时,(x)g(x)-f(x)(x)>0,且f(-2)=0,则不等式f(x)g(x)<0的解集为________

查看答案和解析>>

科目:高中数学 来源:徐州模拟 题型:解答题

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为2
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案