精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2-alnx+x(a∈R)
(Ⅰ)当a=1时,求曲线y=f(x)在点A(1,f(1))处的切线方程;
(Ⅱ)讨论函数y=f(x)的单调性.
分析:(Ⅰ)求导函数,可得切线的斜率,求出切点坐标,利用点斜式可得切线方程;
(Ⅱ)确定函数的定义域,求导函数,分类讨论,利用导数的正负,可讨论函数y=f(x)的单调性.
解答:解:(Ⅰ)当a=1时,f(x)=x2-lnx+x,f(1)=2,此时点A(1,2),f′(x)=2x-
1
x
+1

∴切线的斜率k=f′(1)=2,
∴切线方程为:y-2=2(x-1),
即y=2x…(5分)
(Ⅱ)由题意知:f(x)的定义域为(0,+∞),f′(x)=2x-
a
x
+1=
2x2+x-a
x
…(7分)
令g(x)=2x2+x-a(x>0)
(1)当△=1+8a≤0,即a≤-
1
8
时,g(x)≥0,
∴?x∈(0,+∞),f′(x)≥0,
∴f(x)为(0,+∞)的单调递增函数;
(2)当△=1+8a>0,即a>-
1
8
时,此时g(x)=0有两个根:x1=
-1-
1+8a
4
<0
x2=
-1+
1+8a
4

①若x2=
-1+
1+8a
4
≤0
⇒-
1
8
<a≤0
时,f′(x)≥0,?x∈(0,+∞)
②若x2=
-1+
1+8a
4
>0
⇒a>0时,当x∈(0,
-1+
1+8a
4
),f(x)<0

x∈(
-1+
1+8a
4
,+∞),f(x)>0

综上可知:(1)当a≤-
1
8
时时,f(x)为(0,+∞)的单调递增函数;
(2)当a>-
1
8
时,f(x)的减区间是(0,
-1+
1+8a
4
)
,增区间是(
-1+
1+8a
4
,+∞)
…(13分)
点评:本题考查导数知识的运用,考查导数的几何意义,考查函数的单调性,考查分类讨论的数学思想,正确求导,合理分类是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案