精英家教网 > 高中数学 > 题目详情

对于区间[m,n]上有意义的两个函数f(x)与g(x),如果任意x∈[m,n],均有|f(x)-g(x)|≤1,则称f(x)与g(x)在[m,n]上是接近的,否则称f(x)与g(x)在[m,n]上是非接近的.

现有两个函数

(1)

f1(x)-f2(x)的定义域

(2)

f1(x)与f2(x)在整个给定区间[a+2,a+3]上都有意义,

①求a的取值范围;

②讨论f1(x)与f2(x)在整个给定区间[a+2,a+3]上是不时是接近的.

答案:
解析:

(1)

定义域为

(2)

∴0<a<1

②若


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于区间[m,n]上有意义的两个函数f(x)与g(x),如果对任意x∈[m,n]均有|f(x)-g(x)|≤1,则称f(x)与g(x)在[m,n]上是接近的;否则,称f(x)与g(x)在[m,n]上是非接近的.现有两个函数f1(x)=loga(x-3a)与f2(x)=loga
1x-a
(a>0且a≠1),f1(x)与f2(x)在给定区间[a+2,a+3]上都有意义,
(1)求a的取值范围;
(2)问f1(x)与f2(x)在给定区间[a+2,a+3]上是否为接近的?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于区间[m,n]上有意义的两个函数f(x)与g(x),如果任意x∈[m,n],均有|f(x)-g(x)|≤1,则称f(x)与g(x)在[m,n]上是接近的,否则称f(x)与g(x)在[m,n]上是非接近的.现有两个函数f1(x)=loga(x-3a)与f2(x)=loga
1x-a
(a>0,a≠1)
(1)求f1(x)-f2(x)的定义域;
(2)若f1(x)与f2(x)在整个给定区间[a+2,a+3]上都有意义,
①求a的取值范围;
②讨论f1(x)与f2(x)在整个给定区间[a+2,a+3]上是不是接近的.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年山东省济宁市曲阜师大附中高一(下)4月月考数学试卷(解析版) 题型:解答题

对于区间[m,n]上有意义的两个函数f(x)与g(x),如果任意x∈[m,n],均有|f(x)-g(x)|≤1,则称f(x)与g(x)在[m,n]上是接近的,否则称f(x)与g(x)在[m,n]上是非接近的.现有两个函数f1(x)=loga(x-3a)与f2(x)=loga(a>0,a≠1)
(1)求f1(x)-f2(x)的定义域;
(2)若f1(x)与f2(x)在整个给定区间[a+2,a+3]上都有意义,
①求a的取值范围;
②讨论f1(x)与f2(x)在整个给定区间[a+2,a+3]上是不是接近的.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年重庆八中高一(上)期末数学试卷(解析版) 题型:解答题

对于区间[m,n]上有意义的两个函数f(x)与g(x),如果对任意x∈[m,n]均有|f(x)-g(x)|≤1,则称f(x)与g(x)在[m,n]上是接近的;否则,称f(x)与g(x)在[m,n]上是非接近的.现有两个函数f1(x)=loga(x-3a)与(a>0且a≠1),f1(x)与f2(x)在给定区间[a+2,a+3]上都有意义,
(1)求a的取值范围;
(2)问f1(x)与f2(x)在给定区间[a+2,a+3]上是否为接近的?请说明理由.

查看答案和解析>>

科目:高中数学 来源:2008-2009学年重庆市江北中学高三(上)周练数学试卷1(理科)(解析版) 题型:解答题

对于区间[m,n]上有意义的两个函数f(x)与g(x),如果对任意x∈[m,n]均有|f(x)-g(x)|≤1,则称f(x)与g(x)在[m,n]上是接近的;否则,称f(x)与g(x)在[m,n]上是非接近的.现有两个函数f1(x)=loga(x-3a)与(a>0且a≠1),f1(x)与f2(x)在给定区间[a+2,a+3]上都有意义,
(1)求a的取值范围;
(2)问f1(x)与f2(x)在给定区间[a+2,a+3]上是否为接近的?请说明理由.

查看答案和解析>>

同步练习册答案