精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
1
2
x2+alnx(a∈R).
(Ⅰ)若函数f(x)的图象在x=2处的切线方程为y=x+b,求a,b的值;
(Ⅱ)若函数f(x)在(1,+∞)上为增函数,求a的取值范围.
(Ⅰ)已知函数f(x)=
1
2
x2+alnx,则导数f(x)=x+
a
x

函数f(x)的图象在x=2处的切线方程为y=x+b可知:
f(2)=2+
a
2
=1
,f(2)=2+aln2=2+b,解得a=-2,b=-2ln2
(Ⅱ)若函数f(x)在(1,+∞)上为增函数,
f(x)=x+
a
x
≥0在(1,+∞)上恒成立,分离变量得
a≥-x2,而(-x2)在x∈(1,+∞)恒小于-1,即得a≥-1
故a的取值范围为:a≥-1.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1
|x|
,g(x)=1+
x+|x|
2
,若f(x)>g(x),则实数x的取值范围是(  )
A、(-∞,-1)∪(0,1)
B、(-∞,-1)∪(0,
-1+
5
2
)
C、(-1,0)∪(
-1+
5
2
,+∞)
D、(-1,0)∪(0,
-1+
5
2
)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1,x∈Q
0,x∉Q
,则f[f(π)]=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1-x
ax
+lnx(a>0)

(1)若函数f(x)在[1,+∞)上为增函数,求实数a的取值范围;
(2)当a=1时,求f(x)在[
1
2
,2
]上的最大值和最小值;
(3)当a=1时,求证对任意大于1的正整数n,lnn>
1
2
+
1
3
+
1
4
+
+
1
n
恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=1+cos2x-2sin2(x-
π
6
),其中x∈R,则下列结论中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=1+logax(a>0,a≠1),满足f(9)=3,则f-1(log92)的值是(  )

查看答案和解析>>

同步练习册答案