精英家教网 > 高中数学 > 题目详情
(2013•红桥区二模)已知某几何体的三视图如图所示,则该几何体的体积为
3
2
3
2
分析:由已知中的三视图,我们可以判断出几何体的形状,进而求出几何体的底面面积和高后,代入棱锥体积公式,可得答案.
解答:解:由已知中的三视图可得几何体是一个三棱锥
且棱锥的底面是一个以(2+1)=3为底,以1为高的三角形
棱锥的高为3
故棱锥的体积V=
1
3
1
2
(2+1)•1•3=
3
2

故答案为:
3
2
点评:本题考查的知识点是由三视图求体积,其中根据已知判断出几何体的形状是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•红桥区二模)i是虚数单位,复数
7+i
1-i
的共轭复数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•红桥区二模)在下列区间中,函数f (x)=
x
-
3x+4的零点所在的区间为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•红桥区二模)“函数y=ax是增函数”是“1og2a>1”的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•红桥区二模)设变量x,y满足约束条件
2x+y≤2
x+2y≤2
x≥0
y≥0
,则目标函数z=-2x+y的最大值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•红桥区二模)己知抛物线y2=4
3
x的准线与双曲线
x2
a2
-
y2
b2
=1两条渐近线分别交于A,B两点,且|AB|=2,则双曲线的离心率e为(  )

查看答案和解析>>

同步练习册答案