精英家教网 > 高中数学 > 题目详情
已知,n∈N*,
(1)当n=1,2,3时,试比较f(n)与g(n)的大小关系;
(2)猜想f(n)与g(n)的大小关系,并给出证明.
解:(1)当n=1时,f(1)=1,g(1)=1,所以f(1)=g(1);
当n=2时,,所以f(2)<g(2);
当n=3时,,所以f(3)<g(3).
(2) 由(1),猜想f(n)≤g(n);
下面用数学归纳法给出证明:
①当n=1,2,3时,不等式显然成立;
②假设当n=k(k≥3)时不等式成立,即
那么,当n=k+1时,
因为
所以
由①、②可知,对一切n∈N*,都有f(n)≤g(n)成立.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数列{an}的各项都为正数,其前n项和为Sn,已知对任意n∈N*,Sn是an2和an的等差中项.
(Ⅰ)证明数列{an}为等差数列,并求数列{an}的通项公式;
(Ⅱ)证明
1
S1
+
1
S2
+…+
1
Sn
<2;
(Ⅲ)设集合M={m|m=2k,k∈Z,且1000≤k<1500},若存在m∈M,使对满足n>m的一切正整数n,不等式Sn-1005>
a
2
n
2
恒成立,求这样的正整数m共有多少个?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知非零向量列{an}满足:a1=(1,1),且an=(xn,yn)=
12
(xn-1-yn-1,xn-1+yn-1) (n>1,n∈N),令|an|=bn
(Ⅰ)证明:数列{bn}是等比数列,并求{bn}的通项公式;
(Ⅱ)对n∈N*,设cn=bnlog2bn,试问是否存在正整数m,使得cm<cm+1?若存在,请求出m的最小值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知m、n是两条不同的直线,α、β是两个不同的平面,给出下列四个命题
(1)若m∥α,n∥α,则m∥n
(2)若m∥α,n⊥α,则n⊥m
(3)若m⊥n,m⊥α,则n∥α
(4)若m?α,n?β,m∥n,则α∥β
其中真命题的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知多项式f(n)=
1
5
n5+
1
2
n4+
1
3
n3-
1
30
n

(Ⅰ)求f(-1)及f(2)的值;
(Ⅱ)试探求对一切整数n,f(n)是否一定是整数?并证明你的结论.
(Ⅰ) f(-1)=0,f(2)=16.
(Ⅱ) 对一切整数n,f(n)一定是整数.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黄浦区一模)已知a<b,且a2-a-6=0,b2-b-6=0,数列{an}、{bn}满足a1=1,a2=-6a,an+1=6an-9an-1(n≥2,n∈N*)bn=an+1-ban(n∈N*)
(1)求证数列{bn}是等比数列;
(2)求数列{an}的通项公式an
(3)若{cn}满足c1=1,c2=5,cn+2=5cn+1-6cn(n∈N*),试用数学归纳法证明:cn +acn-1=
an3n-2
(n≥2,n∈N*)

查看答案和解析>>

同步练习册答案