科目:高中数学 来源: 题型:
(08年潍坊市三模理)(12分)已知函数f(x)的图像与函数
的图像关于点A(0,1)对称.
(1)求f(x)的解析式;
(2)若
,且
在区间(0,
上为减函数,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
(08年潍坊市三模文)(12分)已知函数f(x)的图像与函数
的图像关于点A(0,1)对称.
(1)求f(x)的解析式;
(2)若
,且
在区间(0,2]上为减函数,求实数a的取值范围;
查看答案和解析>>
科目:高中数学 来源:2011-2012学年山东省高三下学期模拟预测文科数学试卷(解析版) 题型:解答题
设函数f(x)=lnx,g(x)=ax+
,函数f(x)的图像与x轴的交点也在函数g(x)的图像上,且在此点处f(x)与g(x)有公切线.[来源:学。科。网]
(Ⅰ)求a、b的值;
(Ⅱ)设x>0,试比较f(x)与g(x)的大小.[来源:学,科,网Z,X,X,K]
【解析】第一问解:因为f(x)=lnx,g(x)=ax+![]()
则其导数为![]()
由题意得,![]()
第二问,由(I)可知
,令
。
∵
, …………8分
∴
是(0,+∞)上的减函数,而F(1)=0, …………9分
∴当
时,
,有
;当
时,
,有
;当x=1时,
,有
解:因为f(x)=lnx,g(x)=ax+![]()
则其导数为![]()
由题意得,![]()
(11)由(I)可知
,令
。
∵
, …………8分
∴
是(0,+∞)上的减函数,而F(1)=0, …………9分
∴当
时,
,有
;当
时,
,有
;当x=1时,
,有![]()
查看答案和解析>>
科目:高中数学 来源:2011-2012学年山东省高考模拟预测卷文科数学(一)(解析版) 题型:解答题
设函数f(x)=lnx,g(x)=ax+
,函数f(x)的图像与x轴的交点也在函数g(x)的图像上,且在此点处f(x)与g(x)有公切线.
(Ⅰ)求a、b的值;
(Ⅱ)设x>0,试比较f(x)与g(x)的大小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com