精英家教网 > 高中数学 > 题目详情
已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率e=
2
2
,且过点
M(2,1),又椭圆E上存在A、B两点关于直线l:y=x+m对称.
(Ⅰ)求椭圆E的方程,
(Ⅱ)求实数m的取值范围,
(Ⅲ)设点P在直线l上,若∠APB=
3
,求S△APB的最大值.
分析:(Ⅰ)根据离心率求得a和c的关系,进而求得a和b的关系式,把点(2,1)代入椭圆方程求得a和b的另一关系式,联立求得a和b,则椭圆的方程可得.
(Ⅱ)设出直线AB的方程和A,B的坐标,把直线方程与椭圆方程联立消去y,利用判别式大于0求得n的范围,根据韦达定理求得x1+x2和x1x2的表达式,设出C的坐标,进而求得x0和y0的表达式,代入直线方程求得m和n的关系式.利用n的范围确定m的范围.
(Ⅲ)根据题意可判断出△APB为等腰直角三角形,进而利用三角形面积公式求得三角形面积的表达式,根据n的范围确定三角形面积的最大值.
解答:解:(Ⅰ)∵
c
a
=
2
2
4
a2
+
1
b2
=1

a=
6
,b=
3

∴椭圆E得方程为:
x2
6
+
y2
3
=1


(Ⅱ)设直线AB的方程为y=-x+n,设A(x1,y1)B(x2,y2
x2+2y2-6=0
y=-x+n
得3x2-4nx+2n2-6=0
∵△>0∴-3<n<3
x1+x2=
2n
3
x1x2=
2n2-6
3
设A.B的中点C(x0,y0),
x0=
n
3
y0=
2n
3
点C在ly=-x+n上
∴n=3m即-3<3m<3得-1<m<1

(Ⅲ)依题意得:△APB是等腰三角形,∠APB=
3

S△APB=
1
2
|AB|•(
|AB|
2
3
)=
3
12
|AB|2

|AB|=
2
|x1-x2|=
4
3
9-n2

|AB|2=
16
9
(9-n2)

∴当n=0时,S△APB取最大值
4
3
3
点评:本题主要考查了直线与圆锥曲线的综合问题.位置关系是历年高考命题的热点,平时应强化训练.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知椭圆E:
x2
a2
+
y2
b2
=1
(a>b>0),焦点为F1、F2,双曲线G:x2-y2=m(m>0)的顶点是该椭圆的焦点,设P是双曲线G上异于顶点的任一点,直线PF1、PF2与椭圆的交点分别为A、B和C、D,已知三角形ABF2的周长等于8
2
,椭圆四个顶点组成的菱形的面积为8
2

(1)求椭圆E与双曲线G的方程;
(2)设直线PF1、PF2的斜率分别为k1和k2,探求k1和k2的关系;
(3)是否存在常数λ,使得|AB|+|CD|=λ|AB|•|CD|恒成立?若存在,试求出λ的值;若不存在,请说明理由.
精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E:
x2
a2
+
y2
b2
=1
(a>b>0),以F1(-c,0)为圆心,以a-c为半径作圆F1,过点B2(0,b)作圆F1的两条切线,设切点为M、N.
(1)若过两个切点M、N的直线恰好经过点B1(0,-b)时,求此椭圆的离心率;
(2)若直线MN的斜率为-1,且原点到直线MN的距离为4(
2
-1),求此时的椭圆方程;
(3)是否存在椭圆E,使得直线MN的斜率k在区间(-
2
2
,-
3
3
)内取值?若存在,求出椭圆E的离心率e的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E:
x2
a2
+
y2
3
=1
(a
3
)的离心率e=
1
2
.直线x=t(t>0)与曲线 E交于不同的两点M,N,以线段MN 为直径作圆 C,圆心为 C.
 (1)求椭圆E的方程;
 (2)若圆C与y轴相交于不同的两点A,B,求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•佛山二模)已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
的一个交点为F1(-
3
,0)
,而且过点H(
3
1
2
)

(Ⅰ)求椭圆E的方程;
(Ⅱ)设椭圆E的上下顶点分别为A1,A2,P是椭圆上异于A1,A2的任一点,直线PA1,PA2分别交x轴于点N,M,若直线OT与过点M,N的圆G相切,切点为T.证明:线段OT的长为定值,并求出该定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E:
x2
a2
+y2=1
(a>1)的离心率e=
3
2
,直线x=2t(t>0)与椭圆E交于不同的两点M、N,以线段MN为直径作圆C,圆心为C
(Ⅰ)求椭圆E的方程;
(Ⅱ)当圆C与y轴相切的时候,求t的值;
(Ⅲ)若O为坐标原点,求△OMN面积的最大值.

查看答案和解析>>

同步练习册答案