精英家教网 > 高中数学 > 题目详情

求圆心在上,且过点的圆的标准方程.


解析:

方法一  设点C为圆心,∵点C在直线上,

∴可设点C的坐标为.

又∵该圆经过两点,∴.

,解得.

∴圆心坐标为,半径.

故所求圆的标准方程为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆C的圆心在直线y=x+1上,且过点A(1,3),与直线x+2y-7=0相切.
(1)求圆C的方程;
(2)设直线l:ax-y-2=0(a>0)与圆C相交于A、B两点,求实数a的取值范围;
(3)在(Ⅱ)的条件下,是否存在实数a,使得弦AB的垂直平分线l过点P(-2,4),若存在,求出实数a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C的圆心在直线y=x+1上,且过点A(1,3),与直线x+2y-7=0相切.
(1)求圆C的方程;
(2)设直线l:ax-y-2=0(a>0)与圆C相交于A、B两点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C圆心在直线y=x-1上,且过点A(1,3),B(4,2).
(1)求圆C的方程;
(2)若直线x+2y+m=0与圆C相交于M、N两点,O为坐标原点,且∠MON=60°,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆M的圆心在直线2x-y-6=0上,且过点(1,2)、(4,-1).
(1)求圆M的方程;
(2)设P为圆M上任一点,过点P向圆O:x2+y2=1引切线,切点为Q.试探究:平面内是否存在一定点R,使得
PQPR
为定值?若存在,求出点R的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案