精英家教网 > 高中数学 > 题目详情
(2013•河池模拟)函数f(x)=1+logax(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny-2=0上,其中mn>0,则
1
 m
+
1
n
的最小值为(  )
分析:利用1的对数等于0的性质和基本不等式的性质即可得出.
解答:解:∵f(1)=1+loga1=1,∴函数f(a)=1+logax(a>0,a≠1)的图象恒过定点A(1,1),
∵点A(1,1)在直线mx+ny-2=0上,∴m+n-2=0.∵mn>0,∴m>0,n>0.
1
 m
+
1
n
=
1
2
(m+n)(
1
m
+
1
n
)
=
1
2
(2+
n
m
+
m
n
)
1
2
(2+2
n
m
×
m
n
)
=2,当且仅当m+n=2,
n
m
=
m
n
,m>0,n>0即m=n=1时取等号.
故选B.
点评:熟练掌握对数的性质和基本不等式的性质是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•河池模拟)已知函数f(x)的导函数f′(x)的图象如图所示,那么函数f(x)的图象最有可能的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•河池模拟)已知数列{an}满足a1=1,a2=3,an+2=3an+1-2an(n∈N+
(1)证明:数列{an+1-an }是等比数列;
(2)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•河池模拟)在如图所示的四棱锥P-ABCD中,已知 PA⊥平面ABCD,AB∥DC,∠DAB=90°,PA=AD=DC=1,AB=2,M为PB的中点.
(Ⅰ)求证:MC∥平面PAD;
(Ⅱ)求证:平面PAC⊥平面PBC;
(Ⅲ)求直线MC与平面PAC所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•河池模拟)已知函数f(x)满足下面关系:(1)f(x+
π
2
)=f(x-
π
2
)
(2)当x∈(0,π]时 f(x)=-cosx
给出下列四个命题:
①函数f(x)为周期函数      
②函数f(x)为奇函数
③函数f(x)的图象关于y轴对称  
④方程f(x)=lg|x|的解的个数是8
其中正确命题的序号是:
①④
①④
(把正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•河池模拟)函数f(x)=Asin(ωx+
π
6
)(ω>0)
的图象与x轴的交点的横坐标构成一个公差为
π
2
的等差数列,要得到函数g(x)=Asinωx的国像,只需将f(x)的图象向右平移
π
12
π
12
个单位.

查看答案和解析>>

同步练习册答案